Cho a,b,c là độ dài ba cạnh của tam giác có diện tích bằng \(\sqrt{3}\)Cmr
\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+a^6}\le\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào em, em tham khảo nhé!
John missed the ferry because his car broke down —> If John's car hadn't broken down, he wouldn't have missed the ferry.
Chúc em học tốt và có những trải nghiệm tuyệt vời tại olm.vn!
John would not have missed the terry if his car hadn't broken down.
TRẢ LỜI:
Mệnh đề phủ định của P: P− “ π không là một số hữu tỉ”.
P là mệnh đề sai, P− là mệnh đề đúng.
Mệnh đề phủ định của Q: Q− “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh thứ ba”.
Q là mệnh đề đúng, Q− là mệnh đề sai.
tk cho mk ha
TL:
sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A
Vế trái = sinA + sinB + sinC
= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2[cos(A - B)/2 + sinC/2]
=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]
= 4.cosC/2.cosB/2.cosA/2
Vế phải = 1 - cosA + cosB + cosC
= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2
= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)
= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2
= 4.sinA/2.cosB/2.cosC/2
Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC
<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2
<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0
mà cosB/2 ≠ 0 và cosC/2 ≠ 0
=> sinA/2 = cosA/2
<=> A/2 = 45o
<=> A = 90o
tam giác ABC vuông tại A
\(\cot\alpha=\frac{1}{2}\Rightarrow\tan\alpha=2\)
\(\Rightarrow\frac{1}{\cos^2\alpha}=1+\tan^2\alpha=5;\frac{1}{\sin^2\alpha}=1+\cot^2\alpha=\frac{5}{4}\)
\(\Rightarrow\cos^2\alpha=\frac{1}{5};\sin^2\alpha=\frac{4}{5}\)
\(P=\sin^2\left(\pi-\alpha\right).\sin\left(\frac{\pi}{2}-\alpha\right).\cos\alpha\)
\(=\sin^2\alpha.\cos^2\alpha=\frac{4}{25}\)