vẽ mạch điện gồm:
a) Khóa K1 sử dụng cho đèn ống và bình điện phân.
b) Khóa K2 sử dụng cho chuông điện và quạt điện.
c) Khóa K3 sử dụng cho bình điện phân (a), đèn tròn và chuông điện (b)
d) Cầu chì và ampe kế dùng cho mạch chính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK
\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)
Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)
Bình phương 2 vế PT
\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)
\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)
BP 3 vế PT
\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)
\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)
\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)
Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé
Điều kiện xác định: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
\(\left(x-3\right)\sqrt{x^2-4}-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{x^2-4}-x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x^2-4}=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x^2-4=x^2+6x+9\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\6x=-13\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x=-\dfrac{13}{6}\end{matrix}\right.\end{matrix}\right.\)
Kết hợp với điều kiện xác định, ta được: \(\left[{}\begin{matrix}x=3\\x=-\dfrac{13}{6}\end{matrix}\right.\)
Vậy nghiệm của phương trình là S = \(\left\{-\dfrac{13}{6};3\right\}\)
ĐK
\(x\ge0\) và \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\Rightarrow x\ge0\)
Bình phương 2 vế PT
\(x+x+1+2\sqrt{x\left(x+1\right)}=1+x\left(x+1\right)+2\sqrt{x\left(x+1\right)}\)
\(\Leftrightarrow2x+1=1+x^2+x\)
\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) Thỏa mãn điều kiện \(x\ge0\)
2\(\sqrt{x+2+\sqrt{x+1}}\) - \(\sqrt{x+1}\) = 4; Đk \(x\ge\) -1
2\(\sqrt{\left(\sqrt{x+1}\right)^2+2\sqrt{x+1}+1}\) - \(\sqrt{x+1}\) = 4
2\(\sqrt{\left(\sqrt{x+1}+1\right)^2}\) - \(\sqrt{x+1}\) = 4
2(\(\sqrt{x+1}\) + 1) - \(\sqrt{x+1}\) = 4
2\(\sqrt{x+1}\) + 2 - \(\sqrt{x+1}\) = 4
\(\sqrt{x+1}\) = 4 - 2
\(\sqrt{x+1}\) = 2
\(x+1\) = 4
\(x\) = 4 - 1
\(x\) = 3
\(...\Rightarrow2\sqrt[]{x+1+2\sqrt[]{x+1+1}}-\sqrt[]{x+1}=4\left(x\ge-1\right)\)
\(\Rightarrow2\sqrt[]{\left(\sqrt[]{x+1}+1\right)^2}-\sqrt[]{x+1}=4\)
\(\Rightarrow2|\sqrt[]{x+1}+1|-\sqrt[]{x+1}=4\left(1\right)\)
Nếu \(\sqrt[]{x+1}+1\ge0\Rightarrow x\ge-1\)
\(\left(1\right)\Rightarrow2\sqrt[]{x+1}+1-\sqrt[]{x+1}=4\)
\(\Rightarrow\sqrt[]{x+1}=3\Rightarrow x+1=9\Rightarrow x=8\)
Nếu \(\sqrt[]{x+1}+1\le0\Rightarrow x\in\varnothing\)
Vậy \(x=8\)
\(B=\left[\dfrac{\sqrt{x-2}}{\left(\sqrt{x}-1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\dfrac{-2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2x}{x-1}\)
b/
\(B=-\dfrac{2\left(x-1\right)+2}{x-1}=-2+\dfrac{2}{x-1}\)
Để B nguyên
\(x-1=\left\{-1;-2;1;2\right\}\Rightarrow x=\left[0;-1;2;3\right]\)
Điều kiện
\(3x-1\ge0\Leftrightarrow x\ge\dfrac{1}{3}\)
\(4-x\ge0\Leftrightarrow x\le4\)
Kết hợp 2 đk \(\Rightarrow\dfrac{1}{3}\le x\le4\)
Bình phương 2 vế PT
\(4\left(3x-1\right)=4-x\)
\(\Leftrightarrow12x-4=4-x\Leftrightarrow13x=8\)
\(\Leftrightarrow x=\dfrac{8}{13}\) Đối chiếu với đk thỏa mãn
Thực hiện phép tính:
\(\left(\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\right):\sqrt{3-2\sqrt{2}}\)
(\(\dfrac{1}{\sqrt{2}-1}\) - \(\dfrac{1}{\sqrt{2}+1}\)): \(\sqrt{3-2\sqrt{2}}\)
= \(\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\left(\sqrt{2}-1\right).\left(\sqrt{2}+1\right)}\): \(\sqrt{2-2\sqrt{2}+1}\)
= \(\dfrac{2}{2-1}\).\(\sqrt{\left(\sqrt{2}-1\right)^2}\)
= 2(\(\sqrt{2}\) - 1)
= 2\(\sqrt{2}\) - 2