Tìm giá trị nhỏ nhất của P= 5x^2 +x +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k=>\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\left(1\right)\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Sửa đề: Oz là tia đối của tia Oy
Ot là phân giác của góc xOy
=>\(\widehat{yOt}=\dfrac{\widehat{xOy}}{2}=\dfrac{110^0}{2}=55^0\)
Ta có: \(\widehat{yOt}+\widehat{tOz}=180^0\)(hai góc kề bù)
=>\(\widehat{tOz}+55^0=180^0\)
=>\(\widehat{tOz}=125^0\)
a: ta có: \(BM=MC=\dfrac{BC}{2}\)
\(CN=ND=\dfrac{CD}{2}\)
mà BC=CD
nên BM=MC=CN=ND
Xét ΔABM vuông tại B và ΔBCN vuông tại C có
AB=BC
BM=CN
Do đó: ΔABM=ΔBCN
=>AM=BN
ΔABM=ΔBCN
=>\(\widehat{BMA}=\widehat{CNB}\)
=>\(\widehat{AMB}+\widehat{CBN}=90^0\)
=>AM\(\perp\)BN tại E
2x(1-x)-(2x-1)(x+1)
\(=2x-2x^2-\left(2x^2+2x-x-1\right)\)
\(=-2x^2+2x-2x^2-x+1\)
\(=-4x^2+x+1\)
Em cần làm gì với biểu thức này thì nên ghi rõ yêu cầu ra em nhé!
\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)
Ta có bảng sau:
3x+y-4 | -1 | 1 |
2x+y+1 | -1 | 1 |
x | 5 | 5 |
y | -12 | -10 |
Vậy \(\left(x;y\right)=\left(5;-12\right);\left(5;-10\right)\)
Do 729 chia hết cho 3 \(\Rightarrow2x^2\) chia hết cho 3 \(\Rightarrow x\) chia hết cho 3
\(\Rightarrow x=3x_1\)
\(\Rightarrow2\left(3x_1\right)^2+3y^2=729\)
\(\Rightarrow6x_1^2+y^2=243\)
Tương tự, 243 chia hết cho 3 \(\Rightarrow y=3y_1\)
\(\Rightarrow6x_1^2+9y_1^2=243\)
\(\Rightarrow2x_1^2+3y_1^2=81\)
Lý luận tương tự ta có \(\left\{{}\begin{matrix}x_1=3x_2\\y_1=3y_2\end{matrix}\right.\)
\(\Rightarrow2x_2^2+3y_2^2=1\) (1)
(1) ko có nghiệm nguyên nên pt đã cho ko có nghiệm nguyên
Đề là \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\) với đúng chứ em?
Do E đối xứng A qua D \(\Rightarrow D\) là trung điểm AE
Mà D là trung điểm BC
\(\Rightarrow AE\) và BC cắt nhau tại trung điểm D của mỗi đường
\(\Rightarrow ABEC\) là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow AB=CE\)
\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)
Pt ước số đơn giản, em có thể tự lập bảng giá trị
\(P\left(x\right)=5x^2+x+2=5\left(x^2+\dfrac{1}{5}x\right)+2\\ =5\left(x^2+2.x.\dfrac{1}{10}+\left(\dfrac{1}{10}\right)^2\right)-5.\left(\dfrac{1}{10}\right)^2+2\\ =5\left(x+\dfrac{1}{10}\right)^2+\dfrac{39}{20}\)
Nhận xét: \(\left(x+\dfrac{1}{10}\right)^2\ge0\forall x\inℝ\\ \Rightarrow5\left(x+\dfrac{1}{10}\right)^2\ge0\\ \Rightarrow P\left(x\right)=5\left(x+\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(Min_{P\left(x\right)}=\dfrac{39}{20}\) tại \(\left(x+\dfrac{1}{10}\right)^2=0\Leftrightarrow x+\dfrac{1}{10}=0\Leftrightarrow x=-\dfrac{1}{10}\)