K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2024

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k=>\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\left(1\right)\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

29 tháng 6 2016

a) Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

b Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

Từ \(\frac{a}{c}=\frac{a-b}{c-d}\) \(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

29 tháng 6 2016

a)a=c

b)a=c

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

5 tháng 8 2015

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

28 tháng 7 2019

Ta có:

\(a^2+b^2=c^2+d^2\)

\(\Leftrightarrow a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

Mà \(a+b=c+d\Leftrightarrow a-c=d-b\)

\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

TH1: \(a-c\ne0\)

\(\Rightarrow a+c=d+b\Leftrightarrow a-b=d-c\left(1\right)\)

Lại có: \(a+b=c+d\left(2\right)\)

Cộng (1) và (2) theo vế ta có: \(2a=2d\Leftrightarrow a=d\)\(\Rightarrow b=c\)

\(\Rightarrow a^{2006}=d^{2006}\);  \(b^{2006}=c^{2006}\)

\(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)(*)

TH2: \(a-c=0\)

\(\Rightarrow a=c\)\(\Rightarrow b=d\)

\(\Rightarrow a^{2006}=c^{2006};b^{2006}=d^{2006}\)

\(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)(**)

Từ (*) và (**) \(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)

29 tháng 6 2016

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

30 tháng 6 2016

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.

16 tháng 9 2017

Phân tích ra hết nhé sẽ ra kết quả