Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o
=> D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BAEC là hình thang vuông.
a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4)
Từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có góc AEC=90o
=> BD//CE (cùng vuông góc với DE)
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BDEC là hình thang vuông.
A H B C D E 1 2
a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.
AC là đường trung trực của HE \(\Rightarrow\) AE = AH.
Suy ra AD = AE. (1)
Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)
Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)
Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)
\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)
Do đó D, A, E thẳng hàng. (2)
Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.
b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.
c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông
d) Hãy chứng minh BD = BH, CE = CH.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
A B C D E M I
Bài làm
Gọi giao điểm của MA và ED là I
Xét tam giác cân ABC có:
=> \(\widehat{B}=\widehat{C}\)( hai góc ở đáy )
\(\Rightarrow\widehat{B}=\frac{180^0-\widehat{EAD}}{2}\) ( 1 )
Xét tam giác cân AED có: ( Vì EA = DA )
=> \(\widehat{E}=\widehat{D}\)
\(\Rightarrow\widehat{D}=\frac{180^0-\widehat{BAC}}{2}\)( 2 )
Mà \(\widehat{BAC}=\widehat{EAD}\)( Hai góc đối đỉnh )
Từ ( 1 ) và ( 2 ) => \(\widehat{B}=\widehat{D}\)
Mà hai góc này ở vị trí so le trong
=> ED // AM ( 3 )
Ta có: Tam giác ABC là tam giác cân.
Và M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC
=> AM cũng là đường cao
=> AM | BC ( 4 )
Từ ( 3 ) và ( 4 ) => AI | ED
=> AI cũng là đường cao của ED
Và tam giác AED là tam giác cân
=> MA cũng là đường trung tuyến của của ED
=> EI = ID
=> E đối xứng với cả D qua AI
hay E đối xứng với D qua AM ( đpcm )
# Học tốt #
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
đó nha bn
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
\(\Rightarrow\) AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
\(\Rightarrow\) AH=AE (2)
Từ (1) và (2) \(\Rightarrow\) AD=AE (3)
Mặt khác \(\widehat{DAB}=\widehat{BAH}\); \(\widehat{HAC}=\widehat{CAE}\) và \(\widehat{BAH}+\widehat{HAC}=90^0\)
Do đó \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=180^0\)
Tức là D, A, E thẳng hàng (4)
Từ (3) và (4) \(\Rightarrow\) D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= \(\frac{1}{2}\) DE
Nên tam giác DHE vuông tại H.
c) Tam giác ADB = tam giác AHB ( có chung chiều cao )
\(\Rightarrow\widehat{ADB}=\widehat{ABH}=90^0\)
Tương tự có \(\widehat{AEC}=90^0\)
\(\Rightarrow\) BD//CE (cùng vuông góc với DE)
Nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
Nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
Cộng vế với vế của (5) và (6) ta có BD+CE=BH+CH
Hay BD+CE=BC
Do E đối xứng A qua D \(\Rightarrow D\) là trung điểm AE
Mà D là trung điểm BC
\(\Rightarrow AE\) và BC cắt nhau tại trung điểm D của mỗi đường
\(\Rightarrow ABEC\) là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow AB=CE\)