
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


15 + ( x : 5 - 1 ) = 24
15 + ( x : 5 - 1 ) = 16
x : 5 - 1 = 16 - 15
x : 5 - 1 = 1
x : 5 = 1 + 1
x : 5 = 2
x = 10
Vậy x = 10

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

\(2^x+4.2^{11}=5.2^5\)
\(\Leftrightarrow2^x+4.2048=5.32\)
\(\Leftrightarrow2^x+8192=160\)
\(\Leftrightarrow2^x=-8032\)
Vậy phương trình vô nghiệm

\(\frac{10.\left(4^6.9^5+6^9.120\right)}{8^4.3^{12}-6^{11}}\)
=\(\frac{2.5.\left[\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5\right]}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
=\(\frac{2^{13}.5.3^{10}+2^{13}.5^2.3^{10}}{2^{12}.3^{12}-3^{11}.2^{11}}\)
=\(\frac{2^{13}.5.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
=\(\frac{4.5.6}{3.5}\)
= 8

a) \(2^x=32\)=>\(2^x=2^5\)=>\(x=5\)
b) \(64\times4^x=4^5\)
\(4^3.4^x=4^5\)
\(4^{3+x}=4^5\)
=>\(3+x=5\)
=> x=2
c)\(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
=>\(2^x=2^5\)
=>\(x=5\)
a, 2 mũ x = 32
2 mũ x = 2 mũ 5
x = 5
b, 64 x 4 mũ x = 4 mũ 5
64 x 4 mũ x = 1024
4 mũ x = 1024 : 64
4 mũ x = 16
4 mũ x = 4 mũ 2
x = 2
c, 2 mũ x - 15 = 17
2 mũ x = 17 + 15
2 mũ x = 32
2 mũ x = 2 mũ 5
x = 5

Ta có: \(\left|x-y+1\right|\ge0\forall x,y\)
=>\(2\left|x-y+1\right|\ge0\forall x,y\) (1)
Ta có: \(\left|y-2\right|\ge0\forall y\)
=>\(3\left|y-2\right|\ge0\forall y\) (2)
Từ (1),(2) suy ra \(2\left|x-y+1\right|+3\left|y-2\right|\ge0\forall x,y\)
=>\(-2\left|x-y+1\right|-3\left|y-2\right|\le0\forall x,y\)
=>\(C=-2\left|x-y+1\right|-3\left|y-2\right|-4\le-4\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-y+1=0\\ y-2=0\end{cases}\Rightarrow\begin{cases}y=2\\ x=y-1=2-1=1\end{cases}\)

a, \(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=21:7\)
\(\Rightarrow x=3\)
c, \(x^{10}=1^x\)
\(\Rightarrow x\in\left\{1;0\right\}\)
\(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32=2^4\)
\(\Rightarrow x=4\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Phần này mk ko bt làm đâu
\(x^{10}=1^x\)
\(\Rightarrow\)\(x^{10}=1\)
\(\Rightarrow x=1\)
\(7\cdot4^{x-1}+4^{x-1}=23\)
=>\(8\cdot4^{x-1}=23\)
=>\(2^3\cdot2^{2x-2}=23\)
=>\(2^{2x-2+3}=23\)
=>\(2^{2x+1}=23\)
=>\(2x+1=\log_223\)
=>\(2x=\log_223-1\)
=>\(x=\frac12\left(\log_223-1\right)\)