
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có :
\(2^{225}=\left(2^9\right)^{25}=512^{25}\)
\(3^{125}=\left(3^5\right)^{25}=243^{25}\)
Vì \(512>243\)nên \(512^{25}>243^{25}\)hay \(2^{225}>3^{125}\)
Vậy \(2^{225}>3^{125}\)
Ủng hộ mk nha!!!

a: \(5^{9765625}=5^{5^{10}}=\left(5^5\right)^{10}=3125^{10}\)
\(4^{10000000}=4^{10^7}=\left(4^7\right)^{10}=16384^{10}\)
mà 3125<16384
nên \(5^{9765625}<4^{10000000}\)
b: \(3^{5000000}=\left(3^5\right)^{1000000}=243^{1000000}\)
\(2^{6000000}=\left(2^6\right)^{1000000}=64^{1000000}\)
mà 243>64
nên \(3^{5000000}>2^{6000000}\)
c: \(10^{1000000}=\left(10^5\right)^{200000}=100000^{200000}\)
\(8^{1200000}=\left(8^6\right)^{200000}=262144^{200000}\)
mà 100000<262144
nên \(10^{1000000}<8^{1200000}\)
Để so sánh các số trong các cặp này, ta sẽ tiến hành phân tích các giá trị một cách cụ thể.
a) So sánh \(5^{9765625}\) và \(4^{10000000}\)
Để so sánh hai số này, một cách tiếp cận là nhìn vào cơ số của chúng và mối quan hệ giữa chúng. Cả \(5^{9765625}\) và \(4^{10000000}\) đều là số rất lớn, nhưng cơ số của chúng có sự khác biệt:
- \(5^{9765625}\) có cơ số là 5.
- \(4^{10000000}\) có cơ số là 4.
Vì \(5 > 4\), và \(9765625 < 10000000\), ta có thể giả sử rằng \(5^{9765625}\) sẽ lớn hơn \(4^{10000000}\). Điều này đúng vì dù số mũ của \(4^{10000000}\) lớn hơn, cơ số của \(5^{9765625}\) lớn hơn nhiều, ảnh hưởng mạnh hơn đến giá trị cuối cùng.
Kết luận: \(5^{9765625} > 4^{10000000}\).
b) So sánh \(3^{5000000}\) và \(2^{6000000}\)
Tương tự như trong câu a, ta sẽ so sánh các cơ số và số mũ:
- \(3^{5000000}\) có cơ số là 3.
- \(2^{6000000}\) có cơ số là 2.
Mặc dù \(2^{6000000}\) có số mũ lớn hơn, cơ số 3 của \(3^{5000000}\) lớn hơn cơ số 2. Do đó, \(3^{5000000}\) sẽ lớn hơn \(2^{6000000}\) vì cơ số lớn hơn tác động mạnh hơn số mũ, mặc dù số mũ của \(2^{6000000}\) lớn hơn.
Kết luận: \(3^{5000000} > 2^{6000000}\).
c) So sánh \(1^{}\) và \(8^{}\)
- \(1^{} = 1\) (vì bất kỳ số nào mũ bao nhiêu cũng bằng 1 nếu cơ số là 1).
- \(8^{}\) là một số rất lớn vì \(8 > 1\) và số mũ rất lớn.
Vì vậy, rõ ràng \(1^{} = 1\) sẽ nhỏ hơn \(8^{}\), vì \(8^{}\) là một số cực kỳ lớn.
Kết luận: \(1^{} < 8^{}\).
Tóm tắt kết quả:
a) \(5^{9765625} > 4^{10000000}\)
b) \(3^{5000000} > 2^{6000000}\)
c) \(1^{} < 8^{}\)

So sánh các số hữu tỉ:
a) và
b) và
c) x = -0,75 và
Lời giải:
a)
Vì -22 < -21 và 77> 0 nên x <y
b)
Vì -216 < -213 và 300 > 0 nên y < x
c)
Vậy x=y
Lời giải:
a)
Vì -22 < -21 và 77> 0 nên x <y
b)
Vì -216 < -213 và 300 > 0 nên y < x
c)
Vậy x=y

1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)
\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)
mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp
3) đợi chút
430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
=> 230 + 330 + 430 > 3 . 2410
.


\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)

<
<
<
ngộ nhỉ?
k nha
đúng chắc vì mình cũng học lớp 7 mà
3125 = (34)31.3 = 8131.3
493 = (43)31 = 6431
Vì 6431 < 8131.3 nên 493 < 3125
sai thì mình xin lỗi
\(4^{93}=\left(2^2\right)^{93}=2^{186}\)
\(3^{125}\) \(\)
\(log(2^{186})=186\cdot0,3010\thickapprox56,386\)
\(log(3^{125})=125\cdot0,4771\thickapprox59,6375\)
\(\) Ta thấy: 56,386 < 59,6375
\(\Rightarrow2^{186}<3^{125}\Rightarrow4^{93}<3^{125}\)