Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Làm mẫu câu a nhé:
Ta có: \(2x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)
\(\Rightarrow x=3.5=15\)
\(y=5.2=10\)
Ý 1:
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)
=> x,y=...
\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)
=>x,y=...
\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)
=>x,y,z=....

\(M+N=\) \(5x^3y+9xy^2-7,5xyz+y^3\)
\(M-N=\) \(x^3-xy^2+0,5xyz+y^3\)
Chúc Bạn Học Tốt
Ta có : \(M+N=3x^2y+4xy^2-3,5xyz+y^3+2x^3y+5xy^2-4xyz\)
\(=3x^2y+9xy^2-7,5xyz+y^3+2x^3y\)
\(M-N=3x^2y+4xy^2-3,5xyz+y^3-2x^3y-5xy^2+4xyz\)
\(=3x^2y-xy^2+0,5xyz+y^3-2x^3y\)

\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)
\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)
\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)
\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)
\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)
\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)
Thay x = -1 ; y = 1/2 vào N ta được :
\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)
\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)
\(N=\frac{-20}{3}+1+\frac{5}{2}\)
\(N=\frac{-19}{6}\)
Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2

Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

Khẳng định (A) 3x2y3 và 3x3y2 là hai đơn thức đồng dạng : Sai
`a)` Tổng của hai số là:
`-5x^2+3x^2`
`=x^2(-5+3)`
`=x^2*(-2)`
`=-2x^2`
Hiệu của hai số là:
`-5x^2-3x^2`
`=x^2(-5-3)`
`=x^2(-8)`
`=-8x^2`
`b)` Tổng của hai số là:
`1/2y^3+4,5y^3`
`=0,5y^3+4,5y^3`
`=y^3(0,5+4,5)`
`=5y^3`
Hiệu của hai số là:
`1/2y^3-4,5y^3`
`=0,5y^3-4,5y^3`
`=y^3(0,5-4,5)`
`=y^3*(-4)`
`=-4y^3`
Cho mình một like đi mà