Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}}\)
\(A=\frac{4024}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{2012.2013:2}}\)
\(A=\frac{4024}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}}\)
\(A=\frac{4024}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)}\)
\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{2013}\right)}\)
\(A=\frac{4024}{1+1-\frac{2}{2013}}=\frac{4024}{2-\frac{2}{2013}}=4024:\frac{4024}{2013}=\frac{4024.2013}{4024}=2013\)

Mẫu số = \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2012}\)
\(=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2012\right).2012:2}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(=2.\left(1-\frac{1}{2013}\right)=\frac{2.2012}{2013}\)
Phân số đề bài cho = \(\frac{2.2012}{\frac{2.2012}{2013}}=2013\)

Co quy luat nay ne em: 1+2=3=2.3:2; 1+2+3=6=3.4:2;...;1+2+3+...+2012=2012.2013:2
Suy ra ta co:
Mau so cua D=1 + 1/(2.3:2) + 1/(3.4:2) + 1/(4.5:2) + .... + 1/(2012.2013:2)
=1 + 2/2.3 + 2/3.4 + 2/4.5 + .... + 2/2012.2013
= 2.[1/2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/2012.2013]
=2.[1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ..... + 1/2012.2013]
=2.[1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +....+1/2012 - 1/2013
=2[1 - 1/2013]
=2.2012/2013
Vay D= 2.2012 / (2.2012:2013)=2013

\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)

\(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1=\)
\(\left(1+2+3+4-3-2-1\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)=4-3=1\)

\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha

Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
Nhân 3 vào B
sau lấy 3B-B=2B=.....
tình xong
nhớ chia 2

mh biết làm bài này rùi bn có cần mi2h đang cho bn ko?

Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Đặt \(\frac{1}{1+1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\cdots+2012}=A\)
\(A=\frac12+\frac{1}{\frac{2.\left(1+2\right)}{2}}+\frac{1}{\frac{3.\left(1+3\right)}{2}}+\cdots+\frac{1}{\frac{2012.\left(1+2012\right)}{2}}\)
\(A=\frac12+\frac{2}{2.\left(1+2\right)}+\frac{2}{3.\left(1+3\right)}+\cdots+\frac{2}{2012.\left(1+2012\right)}\)
\(A=\frac12+\frac{2}{2.3}+\frac{2}{3.4}+\cdots+\frac{2}{2012.2013}\)
\(\frac12A=\frac14+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{2012.2013}\)
\(\frac12A=\frac14+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\cdots+\frac{2013-2012}{2012.2013}\)
\(\frac12A=\frac14+\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{2012}-\frac{1}{2013}\)
\(\frac12A=\frac14+\frac12-\frac{1}{2013}\)
\(A=\frac12-1-\frac{2}{2013}\)
\(A=-\frac12-\frac{2}{2013}\)
\(A=-\frac{2017}{4026}\)
\(C=\frac{2.2012}{-\frac{2017}{4026}}=-\frac{4046}{\frac{2017}{4026}}=-\frac{16370116}{2017}\)