K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5

Ko đọc đc

23 tháng 5

Đúng là ko đọc đc ý

1 tháng 9

Bạn chụp thẳng chút nhé. Mình không nhìn được

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

5 giờ trước (10:57)

18: Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)

(ĐIều kiện: x>0; y>0)

Trong 1 giờ, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)

Trong 1 giờ, người thứ hai làm được: \(\frac{1}{y}\) (công việc)

Trong 1 giờ, hai người làm được: \(\frac{1}{16}\) (công việc)

Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)

Trong 3 giờ, người thứ nhất làm được: \(3\cdot\frac{1}{x}=\frac{3}{x}\) (công việc)

Trong 6 giờ, người thứ hai làm được: \(6\cdot\frac{1}{y}=\frac{6}{y}\) (công việc)

Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì hai người làm được 25% công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac14\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\Rightarrow\begin{cases}\frac{6}{x}+\frac{6}{y}=\frac{6}{16}=\frac38\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\)

=>\(\begin{cases}\frac{6}{x}+\frac{6}{y}-\frac{3}{x}-\frac{6}{y}=\frac38-\frac14=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\Rightarrow\begin{cases}\frac{3}{x}=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\)

=>\(\begin{cases}x=24\\ \frac{1}{y}=\frac{1}{16}-\frac{1}{24}=\frac{3}{48}-\frac{2}{48}=\frac{1}{48}\end{cases}\Rightarrow\begin{cases}x=24\\ y=48\end{cases}\) (nhận)

Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 24(giờ) và 48(giờ)

17: Gọi khối lượng thóc đơn vị thứ nhất và đơn vị thứ hai thu hoạch được trong năm ngoái lần lượt là x(tấn) và y(tấn)

(Điều kiện: x>0; y>0)

Năm nay, đơn vị thứ nhất sản xuất được: \(x\left(1+15\%\right)=1,15x\) (tấn)

Năm nay, đơn vị thứ hai sản xuất được:

\(y\left(1+12\%\right)=1,12y\) (tấn)

Năm nay, hai đơn vị sản xuất được 4095 tấn thóc nên 1,15x+1,12y=4095(1)

Năm ngoái, hai đơn vị sản xuất được 3600 tấn thóc nên x+y=3600(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}1,15x+1,12y=4095\\ x+y=3600\end{cases}\Rightarrow\begin{cases}1,15x+1,12y=4095\\ 1,15x+1,15y=4140\end{cases}\)

=>\(\begin{cases}1,15x+1,15y-1,15x-1,12y=4140-4095=45\\ x+y=3600\end{cases}\)

=>\(\begin{cases}0,03y=45\\ x+y=3600\end{cases}\Rightarrow\begin{cases}y=45:0,03=1500\\ x=3600-1500=2100\end{cases}\) (nhận)

Năm nay, đơn vị thứ nhất sản xuất được: \(2100\cdot1,15=2415\) tấn
năm nay, đơn vị thứ hai sản xuất được: \(1500\cdot1,12=1680\) (tấn)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp đường tròn đường kính SO

b: ΔOMN cân tại O

mà OI là đường trung tuyến

nên OI⊥MN tại I

Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)

=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SA=SB

=>S nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra SO là đường trung trực của AB

=>SO⊥AB tại H và H là trung điểm của AB

Xét ΔSAO vuông tại A có AH là đường cao

nên \(SH\cdot SO=SA^2\)

d: Xét (O) có

\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM

\(\hat{ANM}\) là góc nội tiếp chắn cung AM

Do đó: \(\hat{SAM}=\hat{ANM}\)

Xét ΔSAM và ΔSNA có

\(\hat{SAM}=\hat{SNA}\)

góc ASM chung

Do đó: ΔSAM~ΔSNA

=>\(\frac{SA}{SM}=\frac{SN}{SA}\)

=>\(SA^2=SM\cdot SN\)

Bài 3:

a: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB và H là trung điểm của BC

b: OH là phân giác của góc AOB

=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)

Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)

=>\(\frac{OH}{R}=cos60=\frac12\)

=>\(OH=\frac{R}{2}\)

ΔOHA vuông tại H

=>\(HO^2+HA^2=OA^2\)

=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)

=>\(HA=\frac{R\sqrt3}{2}\)

H là trung điểm của AB

=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)

Diện tích tam giác OAB là:

\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)

c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)

nên ΔCOA đều

=>CA=AC=OC=R

Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC=R

Xét tứ giác OACB có OA=CA=CB=OB

nên OACB là hình thoi

Bài 2:

a: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM⊥AB tại M
b: ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=R^2+R^2=2R^2\)

=>\(AB=R\sqrt2\)

ΔOAB vuông tại O có OM là đường trung tuyến

nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)

Bài 1:

a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,D,C cùng thuộc một đường tròn

b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,E,H cùng thuộc một đường tròn

c: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ED<BC

ADHE nội tiếp đường tròn đường kính AH

=>DE<AH