K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5

đừng dùng chat gbt nx

làm ơn

😤😤😤

ĐKXĐ: x>0; x<>1

a: \(A=\left(\frac{x\cdot\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\cdot\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)

\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(x+\sqrt{x}+1-x+\sqrt{x}-1\right):\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{\sqrt{x}-1}\)

b: Để A<0 thì \(\frac{x+\sqrt{x}}{\sqrt{x}-1}<0\)

=>\(\sqrt{x}-1<0\)

=>\(\sqrt{x}<1\)

=>0<x<1

c: Để A nguyên thì \(x+\sqrt{x}\)\(\sqrt{x}-1\)

=>\(x-\sqrt{x}+2\sqrt{x}-2+2\)\(\sqrt{x}-1\)

=>2⋮\(\sqrt{x}-1\)

=>\(\sqrt{x}-1\in\left\lbrace1;-1;2;-2\right\rbrace\)

=>\(\sqrt{x}\in\left\lbrace0;2;3;-1\right\rbrace\)

=>\(\sqrt{x}\in\left\lbrace0;2;3\right\rbrace\)

=>x∈{0;4;9}

Kết hợp ĐKXĐ, ta được: x∈{4;9}

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)

Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là

20-2x(m)

Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:

8-x(m)

Diện tích phần bị thu hồi là:

\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)

b: Diện tích đất bị thu hồi là 455:13=35(m)

=>(x-10)(x-8)=35

=>\(x^2-18x+80-35=0\)

=>\(x^2-18x+45=0\)

=>(x-3)(x-15)=0

=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)

Vậy: x=3

20 giờ trước (22:22)

Bài 3:

a: \(\left(2x+1\right)\left(x^2+2\right)=0\)

\(x^2+2\ge2>0\forall x\)

nên 2x+1=0

=>2x=-1

=>\(x=-\frac12\)

b: \(\left(x^2+4\right)\left(7x-3\right)=0\)

\(x^2+4\ge4>0\forall x\)

nên 7x-3=0

=>7x=3

=>\(x=\frac37\)

c: \(\left(x^2+x+1\right)\left(6-2x\right)=0\)

\(x^2+x+1=x^2+x+\frac14+\frac34=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

nên 6-2x=0

=>2x=6

=>x=3

d: \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)

nên 8x-4=0

=>8x=4

=>\(x=\frac48=\frac12\)

Bài 4:

a: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

=>(x-2)(3x+5)=(x-2)(2x+2)

=>(x-2)(3x+5-2x-2)=0

=>(x-2)(x+3)=0

=>\(\left[\begin{array}{l}x-2=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-3\end{array}\right.\)

b: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

=>(2x+5)(x-4)-(x-5)(4-x)=0

=>(2x+5)(x-4)+(x-5)(x-4)=0

=>(x-4)(2x+5+x-5)=0

=>3x(x-4)=0

=>x(x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x-4=0\end{array}\right.=>\left[\begin{array}{l}x=0\\ x=4\end{array}\right.\)

c: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

=>(3x+1)(3x-1)=(3x+1)(2x-3)

=>(3x+1)(3x-1)-(3x+1)(2x-3)=0

=>(3x+1)(3x-1-2x+3)=0

=>(3x+1)(x+2)=0

=>\(\left[\begin{array}{l}3x+1=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-2\end{array}\right.\)

d: \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

=>\(2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)

=>\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)

=>(3x+1)(5x+4)=0

=>\(\left[\begin{array}{l}3x+1=0\\ 5x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-\frac45\end{array}\right.\)

e: \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

=>\(27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

=>3x(x+3)(9x-4)=0

=>x(x+3)(9x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x+3=0\\ 9x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-3\\ x=\frac49\end{array}\right.\)

f: \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

=>\(\left(4x-1\right)^2=\left(4x+12\right)\left(4x-1\right)\)

=>(4x+12)(4x-1)-\(\left(4x-1\right)^2=0\)

=>(4x-1)(4x+12-4x+1)=0

=>13(4x-1)=0

=>4x-1=0

=>4x=1

=>\(x=\frac14\)

QT
Quoc Tran Anh Le
Giáo viên
4 tháng 9

18: Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)

(ĐIều kiện: x>0; y>0)

Trong 1 giờ, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)

Trong 1 giờ, người thứ hai làm được: \(\frac{1}{y}\) (công việc)

Trong 1 giờ, hai người làm được: \(\frac{1}{16}\) (công việc)

Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)

Trong 3 giờ, người thứ nhất làm được: \(3\cdot\frac{1}{x}=\frac{3}{x}\) (công việc)

Trong 6 giờ, người thứ hai làm được: \(6\cdot\frac{1}{y}=\frac{6}{y}\) (công việc)

Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì hai người làm được 25% công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac14\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\Rightarrow\begin{cases}\frac{6}{x}+\frac{6}{y}=\frac{6}{16}=\frac38\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\)

=>\(\begin{cases}\frac{6}{x}+\frac{6}{y}-\frac{3}{x}-\frac{6}{y}=\frac38-\frac14=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\Rightarrow\begin{cases}\frac{3}{x}=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\)

=>\(\begin{cases}x=24\\ \frac{1}{y}=\frac{1}{16}-\frac{1}{24}=\frac{3}{48}-\frac{2}{48}=\frac{1}{48}\end{cases}\Rightarrow\begin{cases}x=24\\ y=48\end{cases}\) (nhận)

Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 24(giờ) và 48(giờ)

17: Gọi khối lượng thóc đơn vị thứ nhất và đơn vị thứ hai thu hoạch được trong năm ngoái lần lượt là x(tấn) và y(tấn)

(Điều kiện: x>0; y>0)

Năm nay, đơn vị thứ nhất sản xuất được: \(x\left(1+15\%\right)=1,15x\) (tấn)

Năm nay, đơn vị thứ hai sản xuất được:

\(y\left(1+12\%\right)=1,12y\) (tấn)

Năm nay, hai đơn vị sản xuất được 4095 tấn thóc nên 1,15x+1,12y=4095(1)

Năm ngoái, hai đơn vị sản xuất được 3600 tấn thóc nên x+y=3600(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}1,15x+1,12y=4095\\ x+y=3600\end{cases}\Rightarrow\begin{cases}1,15x+1,12y=4095\\ 1,15x+1,15y=4140\end{cases}\)

=>\(\begin{cases}1,15x+1,15y-1,15x-1,12y=4140-4095=45\\ x+y=3600\end{cases}\)

=>\(\begin{cases}0,03y=45\\ x+y=3600\end{cases}\Rightarrow\begin{cases}y=45:0,03=1500\\ x=3600-1500=2100\end{cases}\) (nhận)

Năm nay, đơn vị thứ nhất sản xuất được: \(2100\cdot1,15=2415\) tấn
năm nay, đơn vị thứ hai sản xuất được: \(1500\cdot1,12=1680\) (tấn)

ĐKXĐ: x∉{2;-1;-2}

Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)

=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)

=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)

=>\(2x^3+8x=x^3-4x-x^2+4\)

=>\(x^3+x^2+12x-4=0\)

=>x≃0,32(nhận)

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8