
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)
Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)
Số học sinh khá là 48-8-12=40-12=28(bạn)
Bài 5:
Thể tích xăng còn lại chiếm:
\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)
Thể tích xăng còn lại là:
\(60\cdot30\%=18\left(lít\right)\)

Bài 3:
a: \(\frac{31}{15}>1;\frac{15}{31}<1\)
Do đó: \(\frac{31}{15}>\frac{15}{31}\)
=>\(\left(\frac{31}{15}\right)^{11}>\left(\frac{15}{31}\right)^{11}\)
b: \(\frac89<1\)
=>\(\left(\frac89\right)^{23}>\left(\frac89\right)^{25}\)
=>\(-\left(\frac89\right)^{23}<-\left(\frac89\right)^{25}\)
=>\(\left(-\frac89\right)^{23}<\left(-\frac89\right)^{25}\)
c: \(27^{40}=\left(27^2\right)^{20}=729^{20}\)
\(64^{60}=\left(64^3\right)^{20}=262144^{20}\)
mà 729<262144
nên \(27^{40}<64^{60}\)
Bài 2:
a: \(A=\frac{1}{10}-\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\cdots-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(=\frac{1}{10}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{9\cdot10}\right)\)
\(=\frac{1}{10}-\left(1-\frac12+\frac12-\frac13+\cdots+\frac19-\frac{1}{10}\right)\)
\(=\frac{1}{10}-\left(1-\frac{1}{10}\right)=\frac{1}{10}-\frac{9}{10}=-\frac{8}{10}=-\frac45\)
b: \(B=\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
=>\(3B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
=>\(3B-B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac13-\frac{1}{3^2}-\cdots-\frac{1}{3^{100}}\)
=>\(2B=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\)
=>\(B=\frac{3^{100}-1}{2\cdot3^{100}}\)

4.
Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)
Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:
\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)
Vậy S có tận cùng bằng 9

d: ĐKXĐ: x>=2
Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)
mà \(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)
=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)
=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)
=>x∈∅

Bài 7.
Số học sinh lớp 6A là:
120 x 35 : 100 = 42 (học sinh)
Số học sinh lớp 6C là:
120 x 3/10 = 36 (học sinh)
Số học sinh lớp 6B là:
120 - 42 - 36 = 42 (học sinh)
Đáp số: 42 học sinh
Bài 8.
Số học sinh trung bình là:
1200 x 5/8 = 750 (học sinh)
Số học sinh khá là:
1200 x 1/3 = 400 (học sinh)
Số học sinh giỏi là:
1200 - 750 - 400 = 50 (học sinh)
Đáp số: 50 học sinh
Bài 9.
a) Số học sinh giỏi là:
40 x 1/5 = 8 (học sinh)
Số học sinh trung bình là:
40 x 3/8 = 15 (học sinh)
Số học sinh khá là:
40 - 8 - 15 = 17 (học sinh)
b) Tỉ số phần trăm số học sinh Khá so với cả lớp là:
17 : 40 x 100 = 42,5%
Đáp số: ...

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)

Bài 2:
a: Xét ΔMAB và ΔMCD có
MA=MC
\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>AB=CD
ΔMAB=ΔMCD
=>\(\hat{MAB}=\hat{MCD}\)
=>\(\hat{MCD}=90^0\)
=>CD⊥CA
b: Xét ΔDCB có CB+CD>BD
mà CD=AB
nên CB+AB>BD
=>BA+BC>2BM
c: Ta có: ΔABC vuông tại A
=>BC là cạnh huyền
=>BC là cạnh lớn nhất trong ΔABC
=>BC>AB
mà AB=CD
nên BC>CD
Xét ΔCBD có CB>CD
ma \(\hat{CDB};\hat{CBD}\) lần lượt là góc đối diện của các cạnh CB,CD
nên \(\hat{CDB}>\hat{CBD}\)
mà \(\hat{CDB}=\hat{ABD}\) (ΔMAB=ΔMCD)
nên \(\hat{ABD}>\hat{CBD}\)
Bài 3:
a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC
\(\hat{EAB}\) chung
Do đó: ΔAEB=ΔADC
=>AE=AD
=>ΔAED cân tại A
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
Do đó: ΔADH=ΔAEH
=>\(\hat{DAH}=\hat{EAH}\)
=>AH là phân giác của góc DAE
c: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)
nên DE//BC
d: Ta có: ΔADH=ΔAEH
=>HD=HE
ΔABE=ΔACD
=>BE=CD
Ta có: BE=BH+HE
CD+CH+HD
ma BE=CD va HE=HD
nên HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,M thẳng hàng
Bài 1:
a: ΔADB vuông tại D
=>BD<AB
ΔACE vuông tại E
=>CE<AC
Ta có: BD<AB
CE<AC
Do đó: BD+CE<AB+AC
b: ΔBDC vuông tại D
=>BD<BC
ΔBEC vuông tại E
=>CE<BC
Ta có: BD<BC
CE<BC
Do đó: \(BD+CE< BC+BC=2BC\)
=>\(BC>\dfrac{BD+CE}{2}\)
🤔🤨