K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: ΔADB vuông tại D

=>BD<AB

ΔACE vuông tại E

=>CE<AC

Ta có: BD<AB

CE<AC

Do đó: BD+CE<AB+AC

b: ΔBDC vuông tại D

=>BD<BC

ΔBEC vuông tại E

=>CE<BC

Ta có: BD<BC

CE<BC

Do đó: \(BD+CE< BC+BC=2BC\)

=>\(BC>\dfrac{BD+CE}{2}\)

22 tháng 1

🤔🤨

Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)

Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)

Số học sinh khá là 48-8-12=40-12=28(bạn)

Bài 5:

Thể tích xăng còn lại chiếm:

\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)

Thể tích xăng còn lại là:

\(60\cdot30\%=18\left(lít\right)\)

Bài 3:

a: \(\frac{31}{15}>1;\frac{15}{31}<1\)

Do đó: \(\frac{31}{15}>\frac{15}{31}\)

=>\(\left(\frac{31}{15}\right)^{11}>\left(\frac{15}{31}\right)^{11}\)

b: \(\frac89<1\)

=>\(\left(\frac89\right)^{23}>\left(\frac89\right)^{25}\)

=>\(-\left(\frac89\right)^{23}<-\left(\frac89\right)^{25}\)

=>\(\left(-\frac89\right)^{23}<\left(-\frac89\right)^{25}\)

c: \(27^{40}=\left(27^2\right)^{20}=729^{20}\)

\(64^{60}=\left(64^3\right)^{20}=262144^{20}\)

mà 729<262144

nên \(27^{40}<64^{60}\)

Bài 2:

a: \(A=\frac{1}{10}-\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\cdots-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)

\(=\frac{1}{10}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{9\cdot10}\right)\)

\(=\frac{1}{10}-\left(1-\frac12+\frac12-\frac13+\cdots+\frac19-\frac{1}{10}\right)\)

\(=\frac{1}{10}-\left(1-\frac{1}{10}\right)=\frac{1}{10}-\frac{9}{10}=-\frac{8}{10}=-\frac45\)

b: \(B=\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

=>\(3B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

=>\(3B-B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac13-\frac{1}{3^2}-\cdots-\frac{1}{3^{100}}\)

=>\(2B=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\)

=>\(B=\frac{3^{100}-1}{2\cdot3^{100}}\)

NV
1 tháng 9

4.

Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)

Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:

\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)

Vậy S có tận cùng bằng 9

25 tháng 8

Giúp mình câu d

d: ĐKXĐ: x>=2

Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)

\(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)

=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)

=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)

=>x∈∅

7 tháng 9

Bài 7.

Số học sinh lớp 6A là:

120 x 35 : 100 = 42 (học sinh)

Số học sinh lớp 6C là:

120 x 3/10 = 36 (học sinh)

Số học sinh lớp 6B là:

120 - 42 - 36 = 42 (học sinh)

Đáp số: 42 học sinh

Bài 8.

Số học sinh trung bình là:

1200 x 5/8 = 750 (học sinh)

Số học sinh khá là:

1200 x 1/3 = 400 (học sinh)

Số học sinh giỏi là:

1200 - 750 - 400 = 50 (học sinh)

Đáp số: 50 học sinh

Bài 9.

a) Số học sinh giỏi là:

40 x 1/5 = 8 (học sinh)

Số học sinh trung bình là:

40 x 3/8 = 15 (học sinh)

Số học sinh khá là:

40 - 8 - 15 = 17 (học sinh)

b) Tỉ số phần trăm số học sinh Khá so với cả lớp là:

17 : 40 x 100 = 42,5%

Đáp số: ...

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Bài 2:

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>AB=CD

ΔMAB=ΔMCD

=>\(\hat{MAB}=\hat{MCD}\)

=>\(\hat{MCD}=90^0\)

=>CD⊥CA

b: Xét ΔDCB có CB+CD>BD

mà CD=AB

nên CB+AB>BD

=>BA+BC>2BM

c: Ta có: ΔABC vuông tại A

=>BC là cạnh huyền

=>BC là cạnh lớn nhất trong ΔABC

=>BC>AB

mà AB=CD

nên BC>CD

Xét ΔCBD có CB>CD
ma \(\hat{CDB};\hat{CBD}\) lần lượt là góc đối diện của các cạnh CB,CD

nên \(\hat{CDB}>\hat{CBD}\)

\(\hat{CDB}=\hat{ABD}\) (ΔMAB=ΔMCD)

nên \(\hat{ABD}>\hat{CBD}\)

Bài 3:

a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có

AB=AC

\(\hat{EAB}\) chung

Do đó: ΔAEB=ΔADC

=>AE=AD

=>ΔAED cân tại A

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

AD=AE

Do đó: ΔADH=ΔAEH

=>\(\hat{DAH}=\hat{EAH}\)

=>AH là phân giác của góc DAE

c: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)

nên DE//BC

d: Ta có: ΔADH=ΔAEH

=>HD=HE

ΔABE=ΔACD

=>BE=CD

Ta có: BE=BH+HE

CD+CH+HD

ma BE=CD va HE=HD

nên HB=HC

=>H nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,M thẳng hàng