K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1

0

14 tháng 1

\(n:2;3;4;5;7\) đều dư 1 thì \(\left(n-1\right)\)\(2;3;4;5;7\)

\(\left(n-1\right)\in BCNN\left(2;3;4;5;7\right)\)

Ta có: \(BCNN\left(2;3;4;5;7\right)=420\)

\(n-1=420\)

\(n\) \(=421\)

Vậy số tự nhiên \(n\) nhỏ nhất là \(421\)

4 tháng 7 2017

Gọi số cần tìm là a 

Khi đó a chia 2,3,4,5,6,7 đều dư 1 

Nên a -  1 chia hết cho 2,3,4,5,6,7 (a + 1 nhỏ nhất)

=> a - 1 thuộc BCNN (2,3,4,5,6,7) 

Mà BCNN(2,3,4,5,6,7) = 420 

Nên a - 1 = 420

=> a = 421 

Vậy số cần tìm là 421 !

cảm ơn bạn đã giúp mình .

4 tháng 1 2023

b.Gọi số cần tìm là a.

Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3

          a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5            và a là nhỏ nhất

          a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7

\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).

\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.

\(\Rightarrow\) a + 2 = 105 

\(\Rightarrow\) a = 103

20 tháng 1 2023

Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.batngo

27 tháng 10 2017

Bài 1:  Gọi số cần tìm là a.  \(\left(a\in N,a< 400\right)\)

Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.

Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60

Vậy a có dạng 60k + 1.

Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)

Do a chia hết 7 nên ta suy ra a = 301

Bài 2. 

 Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.

Số đó lại chia hết cho 7 nên ta tìm được các số là :

7.7 = 49 (Thỏa mãn)

7.17 = 119 (Chia 3 dư 2 - Loại)

7.27 = 189 (Chia hết cho 3  - Loại)

7.37 = 259 ( > 200 - Loại)

Vậy số cần tìm là 49.

18 tháng 11 2017

  a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6) 

=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65 

mặt khác a chia hết cho 7 => a = 7m 

Vậy 7m = 60n + 1 

có 1 chia 7 dư 1 
=> 60n chia 7 dư 6 
mà 60 chia 7 dư 4 
=> n chia 7 dư 5 
mà n chỉ lấy từ 1 đến 6 => n = 5 

a = 60.5 + 1 = 301

Bài 7:Với a,b là các chữ số (a \(\ne\) 0).Hãy chứng tỏ:a/ abba chia hết cho 11b/ ababab chia hết cho 7c/ abcabc chia hết cho 7,11,13Bài 8:Cho A = x459y.Hãy thay x,y bởi chữ số thích hợp để A chia cho 2,3,4,5 đều dư 1.Bài 9:Tìm số tự nhiên nhỏ nhất khác 1 sao cho khi chia cho 2,3,4,5 và 7 đều dư 1.Bài 10:Cho số a765b;tìm a,b để khi thay vào số đã cho ta được số có 5 chữ số chia cho 2 dư 1,chia cho 5 dư 3 và chia cho 9...
Đọc tiếp

Bài 7:Với a,b là các chữ số (a \(\ne\) 0).Hãy chứng tỏ:

a/ abba chia hết cho 11

b/ ababab chia hết cho 7

c/ abcabc chia hết cho 7,11,13

Bài 8:Cho A = x459y.Hãy thay x,y bởi chữ số thích hợp để A chia cho 2,3,4,5 đều dư 1.

Bài 9:Tìm số tự nhiên nhỏ nhất khác 1 sao cho khi chia cho 2,3,4,5 và 7 đều dư 1.

Bài 10:Cho số a765b;tìm a,b để khi thay vào số đã cho ta được số có 5 chữ số chia cho 2 dư 1,chia cho 5 dư 3 và chia cho 9 dư 7.

Bài 11:Hãy viết thêm 3 chữ số và bên phải số 567 để được số lẻ có 6 chữ số khác nhau,khi chia số đó cho 5 và 9 đều dư 1.

Bài 12:Tìm số có 4 chữ số chia hết cho 2,3 và 5,biết rằng khi đổi chỗ các chữ số hàng đơn vị với hàng trăm hoặc hàng chục với hàng nghìn thì số đó ko thay đổi.

Bài 13:Viết thêm một chữ số vào bên trái và một chữ số vào bên phải số 15 để được một số có 4 chữ số chia hết cho 15.

3
17 tháng 10 2016

bài 11:

Gọi số phải tìm là: A = 567abc

Do A chia 5 dư 1 mà A lẻ nên c = 1

Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19

Để A chia 9 dư 1 thì a + b = 0 (loại)

                             a + b = 9

                             a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)

Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901

                                                        ==> a = 0, b = 9 ==> A = 567091

ĐS: 3 số phải thêm là: 901 hoặc 091

2 tháng 8 2017

a ơn nhé

17 tháng 10 2015

a) Gọi số cần tìm là a

=> a = BCNN(2;3;4;5;7) + 1

2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7

=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412

Vậy số cần tìm là 421

b) Gọi số cần tìm là a 

=> a + 1 chia hết cho 2;3;4;5

=> a = BCNN(2;3;4;5) - 1

2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5

=> a  = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59

Vậy số cần tìm là 59         

26 tháng 7 2021

số cần tìm 59

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

22 tháng 7 2016

Là 49 nha bn.

22 tháng 7 2016

cho mk cách ghải đc ko. thật là chi tiết để hoc24 tk cho