K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để 4 n + 3 3 n + 1 3n+1 4n+3 thuộc Z thì 4n + 3 chia hết cho 3n + 1

⇒ 3 ( 4 n + 3 ) ⋮ 3 n + 1 ⇒3(4n+3)⋮3n+1 ⇒ 12 n + 9 ⋮ 3 n + 1

⇒12n+9⋮3n+1 ⇒ ( 12 n + 4 ) + 5 ⋮ 3 n + 1

⇒(12n+4)+5⋮3n+1

⇒ 4 ( 3 n + 1 ) + 5 ⋮ 3 n + 1

⇒4(3n+1)+5⋮3n+1

⇒ 5 ⋮ 3 n + 1 ⇒5⋮3n+1

⇒ 3 n + 1 ∈ { ± 1 ; ± 5 }

⇒3n+1∈{±1;±5} +) 3n + 1 = 1

⇒ n = 0

⇒n=0 ( chọn ) +) 3 n + 1 = − 1

⇒ n = − 2 3 3n+1=−1

⇒n= 3 −2 ( loại ) +) 3 n + 1 = 5

⇒ n = 4 3 3n+1=5

⇒n= 3 4 ( loại ) +) 3 n + 1 = − 5

⇒ n = − 2 3n+1=−5

⇒n=−2 Vậy n = 0 hoặc n = -2

9 tháng 1

Bn nhầm đề r

1. \(Q=-\frac{1}{\sqrt{x}-3}\)

để Q nguyên thì \(\sqrt{x}-3\inƯ\left(1\right)=\left(-1;1\right)\)

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)

2. \(Q=\frac{\sqrt{x}-3}{\sqrt{x}-1}=1-\frac{2}{\sqrt{x}-1}\)

Để Q nguyên thì \(\sqrt{x}-1\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)

\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1VN\)

\(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

25 tháng 8 2020

a) đk: \(x\ge0\)

Ta có: 

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)

Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)

Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)

\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)

25 tháng 8 2020

b) đk: \(x\ge0\)

Ta có:

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)

Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)

Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)

=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)

28 tháng 11 2018

đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15

7 tháng 8 2017

1, Để Q\(\in\)Z thì \(\dfrac{-1}{\sqrt{x}-3}\in Z\) khi đó \(\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\end{matrix}\right.\)\(\in Z\)(thỏa mãn)

vậy x\(\in\left\{16,4\right\}\)thì Q\(\in\)Z

2, Để Q\(\in\)Z thì \(\dfrac{\sqrt{x}-2}{3\sqrt{x}-4}\in Z\) khi đó \(\sqrt{x}-2⋮3\sqrt{x}-4\)

<=> 3\(\sqrt{x}\)- 6\(⋮\) 3\(\sqrt{x}\)-4 <=> 3\(\sqrt{x}\)- 4-2 \(⋮\) 3\(\sqrt{x}\)- 4 <=> -2 \(⋮\) 3\(\sqrt{x}\)- 4

=> 3\(\sqrt{x}\)- 4 \(\in\)Ư(-2) Mà Ư(-2) =\(\left\{\pm1,\pm2\right\}\)

+ Với 3\(\sqrt{x}\)- 4 = 1 => 3\(\sqrt{x}\) =5 => \(\sqrt{x}\)= 5/3 =>x =25/9 \(\notin\)Z (loại)

+ Với 3\(\sqrt{x}\)- 4 =-1 => 3\(\sqrt{x}\) =3 => x=1 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =2 => 3\(\sqrt{x}\) =6 => \(\sqrt{x}\)=2=>x=4 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =-2 => 3\(\sqrt{x}\) =2=> \(\sqrt{x}\)=2/3=>x=4/9(loại vì x ko thuộc Z )

Vậy x \(\in\left\{1,4\right\}\)thì Q đạt giá trị nguyên .

7 tháng 8 2017

câu b, bạn có thể khi tìm ra x rồi thay lại vào Q để thử coi Q có thuộc Z ko vì biểu thức khi xét có nhân thêm 3 nên dẫn đến có chênh lệch số .

31 tháng 5 2017

2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1 

<=>4a+2b+2c/a-b+c > 0 (1) 

xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)

=>P(2)/P(-1)>0 => (1) đúng =>đpcm

3, hóng cao nhân 

-đề chuyên LQĐ

31 tháng 5 2017

1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số) 

từ đó  P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4

maxP=1/4,đạt tại a=b=c=1/2