Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: OF là đường trung bình tam giác SAC
\(\Rightarrow OF//SA\Rightarrow OF//\left(SAD\right)\)
OE là đường trung bình tam giác SBD
\(\Rightarrow OE//SD\Rightarrow OE//\left(SAD\right)\)
\(\Rightarrow\left(OEF\right)//\left(SAD\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(M\) là trung điểm của \(AB\)
\(N\) là trung điểm của \(C{\rm{D}}\)
\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABCD\)
\( \Rightarrow MN\parallel A{\rm{D}}\parallel BC\)
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}MN\parallel BC\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {SBC} \right)\\\left. \begin{array}{l}MN\parallel A{\rm{D}}\\A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {SA{\rm{D}}} \right)\end{array}\)
b) \(M\) là trung điểm của \(AB\)
\(E\) là trung điểm của \(SA\)
\( \Rightarrow ME\) là đường trung bình của tam giác \(SAB\)
\(\left. \begin{array}{l} \Rightarrow ME\parallel SB\\ME \subset \left( {MNE} \right)\end{array} \right\} \Rightarrow SB\parallel \left( {MNE} \right)\)
Gọi \(O\) là giao điểm của \(AC\) và \(BD\)
\( \Rightarrow O\) là trung điểm của \(AC\) và \(O,M,N\) thẳng hàng
Mà \(E\) là trung điểm của \(SA\)
\( \Rightarrow OE\) là đường trung bình của tam giác \(SAC\)
\(\left. \begin{array}{l} \Rightarrow OE\parallel SC\\OE \subset \left( {MNE} \right)\end{array} \right\} \Rightarrow SC\parallel \left( {MNE} \right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: Sx là giao tuyến (SAD) và (SBC) sao cho Sx // AD // BC (1)
Có : M, N là trung điểm của AB, CD
Suy ra: MN // AD // BC (2)
Từ (1)(2) suy ra: MN // Sx.
![](https://rs.olm.vn/images/avt/0.png?1311)
S A B C D E F G H M N P Q
Xét tg SNP có
\(\dfrac{SG}{GP}=\dfrac{SF}{FN}=2\) => GF//NP (Talet đảo trong tg)
Mà \(NP\in\left(ABCD\right)\) => GF//(ABCD)
C/m tương tự ta cũng có
EF//(ABCD); GH//(ABCD); HE//(ABCD)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để tìm giao điểm M của SD và (GHK), ta có thể sử dụng tính chất của đường thẳng và mặt phẳng. Đầu tiên, ta cần tìm phương trình đường thẳng SD và phương trình mặt phẳng GHK. Sau đó, ta giải hệ phương trình để tìm giao điểm M.
b) Để chứng minh G, E, M thẳng hàng, ta có thể sử dụng định lý về trọng tâm của tam giác và tính chất của trung điểm. Chúng ta cần chứng minh rằng G, E, M nằm trên cùng một đường thẳng.
Chó
Chó 🐶
Chứng minh (OEF) song song với (SBC):
Xét tam giác SAC, ta có E là trung điểm của SA, O là trung điểm của AC. => EO là đường trung bình của tam giác SAC. => EO song song với SC và EO = 1/2 SC.
Xét tam giác SCD, ta có F là trung điểm của CD, O là trung điểm của AC. => FO là đường trung bình của tam giác SCD. => FO song song với SD và FO = 1/2 SD.
Từ (1) và (2), ta có EO và FO đều song song với SC và SD, lần lượt. => Tứ giác EFOC là hình bình hành.
Kết luận:
Vì EFOC là hình bình hành nên mặt phẳng (OEF) chứa các đoạn EO và FO sẽ song song với mặt phẳng (SBC) chứa đoạn SC và SD.
Do đó, ta đã chứng minh được rằng mặt phẳng (OEF) song song với mặt phẳng (SBC).