Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x 7 – x 2 – 1 = x 7 – x – x 2 + x – 1 = x ( x 6 – 1 ) – ( x 2 – x + 1 ) = x ( x 3 – 1 ) ( x 3 + 1 ) – ( x 2 – x + 1 ) = x ( x 3 – 1 ) ( x + 1 ) ( x 2 – x + 1 ) – ( x 2 – x + 1 ) = ( x 2 – x + 1 ) [ x ( x 3 – 1 ) ( x + 1 ) – 1 ] = x 2 − x + 1 x 4 − x x + 1 − 1 = x 2 − x + 1 x 5 + x 4 − x 2 − x − 1
Đáp án cần chọn là: B
\(=x^2\left(y+1\right)-\left(y+1\right)\)
=(y+1)(x-1)(x+1)
\(-3x^2+4x-2020\)
\(=-3\left(x^2-\frac{4}{3}x+\frac{2020}{3}\right)\)
\(=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}+\frac{6056}{9}\right)\)
\(=-3\left[\left(x-\frac{2}{3}\right)^2+\frac{6056}{9}\right]\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{6056}{3}\ge-\frac{6056}{3}\)
(Dấu "=" \(\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\))
\(x^2+4xy+4y^2-4z^2-1-4z\)
\(=x^2+4xy+4y^2-\left(4z^2+4z+1\right)\)
\(=\left(x+2y\right)^2-\left(2z+1\right)^2\)
\(=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)
= ( x2 + 4xy +4y2 ) - ( 4z2 +4z +1 )
= ( x + y )2 - [ (2z)2 - 2z.1 +12)]
= ( x + y )2 - (2z+1)2
= ( x + y - 2z - 1 ).( x + y + 2z + 1 )
=\(x^2+2.x.2y+\left(2y\right)^2-\left[\left(2z\right)^2+2.2z.1+1^2\right]=\left(x+2y\right)^2-\left(2z+1\right)^2=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)
\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
64x^4+81
=64x^4+144x^2+81-144x^2
=(8x^2+9)^2-(12x)^2
=(8x^2-12x+9)(8x^2+12x+9)
x^8+4y^4
=x^8+4x^4y^2+4y^4-4x^4y^2
=(x^4+2y^2)^2-(2x^2y)^2
=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^6-1)
=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)
=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]
=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)
=(x^2+x+1)(x^6-x^4+x^2-x+1)
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
\(P=x^7+x^2+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^4+x^3+x^2-x^3+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-\left(x^3-1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(f\left(x\right)=x^5-x^4+x^2-x+1\), đa thức này nếu phân tích được thành nhân tử (với hệ số nguyên) thì nghiệm hữu tỉ của nó (nếu có) phải có dạng \(x=\dfrac{p}{q}\) với \(p,q\) là ước của 1 \(\Rightarrow\) \(x=\pm1\). Thử lại, ta thấy cả 2 nghiệm này đều không thỏa mãn.
Vậy không thể phân tích P thành nhân tử được nữa \(\Rightarrow P=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)