K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12

Dễ thấy A, B nằm cùng phía đối với mp (Oxy)

Gọi H, K lần lượt là hình chiếu của A, B lên mp (Oxy) 

\(\Rightarrow H\left(1;2;0\right),K\left(7;10;0\right)\) \(\Rightarrow\overrightarrow{HK}=\left(6;8;0\right)\)

Để \(P=AM+BN\) nhỏ nhất, dễ thấy M, N phải nằm trên đường thẳng HK

\(\Rightarrow\exists k\inℝ:\overrightarrow{MN}=k\overrightarrow{HK}=\left(6k;8k;0\right)\)

Mà \(MN=\left|\overrightarrow{MN}\right|=\sqrt{\left(6k\right)^2+\left(8k\right)^2}=10k=4\) \(\Rightarrow k=\dfrac{2}{5}\)

\(\Rightarrow\overrightarrow{MN}=\left(\dfrac{12}{5};\dfrac{16}{5};0\right)=\overrightarrow{u}\)

Gọi C là điểm đối xứng với A qua (Oxy) \(\Rightarrow C\left(1;2;-3\right)\)

Gọi \(A'=T_{\overrightarrow{u}}\left(C\right)\Rightarrow A'\left(\dfrac{17}{5};\dfrac{26}{5};-3\right)\) 

Khi đó dễ thấy tứ giác MNA'C là hình bình hành (vì A' là ảnh của C qua \(\overrightarrow{MN}\)) nên \(MC=NA'\)

Hơn nữa, vì C đối xứng với A qua (Oxy) \(\Rightarrow MA=MC\Rightarrow MA=NA'\)

\(\Rightarrow T=AM+BN=A'N+BN\ge A'B\)

Dấu "=" xảy ra \(\Leftrightarrow\) N là giao điểm của A'B và (Oxy)

Khi đó \(\overrightarrow{A'B}=\left(\dfrac{18}{5};\dfrac{24}{5};9\right)\). Chọn \(\overrightarrow{n_{AB}}=\left(6;8;15\right)\)

\(\Rightarrow A'B:\dfrac{x-7}{6}=\dfrac{y-10}{8}=\dfrac{z-6}{15}\)

Cho A'B cắt (Oxy) \(\Rightarrow z=0\)  \(\Rightarrow\dfrac{x-7}{6}=\dfrac{y-10}{8}=-\dfrac{2}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{23}{5}\\y=\dfrac{34}{5}\end{matrix}\right.\) \(\Rightarrow N\left(\dfrac{23}{5};\dfrac{34}{5};0\right)\)

Lại có \(\overrightarrow{MN}=\left(\dfrac{12}{5};\dfrac{16}{5};0\right)\) \(\Rightarrow M\left(\dfrac{11}{5};\dfrac{18}{5};0\right)\)

\(\Rightarrow x_M+y_N=\dfrac{11}{5}+\dfrac{34}{5}=9\)

Vậy \(x_M+y_N=9\)

 

 

 

21 tháng 12

Bạn muốn xem hình thì vào trang cá nhân của mình xem nhé.

11 tháng 12 2020

undefined

NV
18 tháng 3 2021

ĐKXĐ: \(x\in\left[0;2018\right]\)

\(y'=\dfrac{1009-x}{\sqrt{2018x-x^2}}=0\Rightarrow x=1009\)

Hàm đồng biến trên \(\left(0;1009\right)\)

10 tháng 9 2019

Chọn D

NV
6 tháng 4 2019

Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)

Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)

Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Ta có: \(S=OA+OB+OC=a+b+c\)

Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)

Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)

\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)

\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)

Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)

Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)

Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.

20 tháng 6 2018

Chọn C

Khối hai mươi mặt đều có các mặt là tam giác nên thuộc loại  3 ; 5 .

15 tháng 4 2021

Gọi A là điểm biểu diễn số phức z

Khi đó A nằm trên đường trung trực của đoạn thẳng đi qua hai điểm (0;2) và (2;4). Ta tìm được pt đường thẳng đó là: d: x+y-4=0

|z|=OA min khi và chỉ khi A là hình chiếu của O trên d

Khi đó ta tìm được A(2;2)

->min|z|=\(2\sqrt{2}\)

0
NV
2 tháng 4 2019

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;y+3;-5\right)\\\overrightarrow{AC}=\left(x-2;7;-1\right)\end{matrix}\right.\)

\(A;B;C\) thẳng hàng \(\Rightarrow\frac{-1}{x-2}=\frac{y+3}{7}=\frac{-5}{-1}\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=-\frac{1}{5}\\y+3=35\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{9}{5}\\y=32\end{matrix}\right.\) \(\Rightarrow10x+y=50\)

14 tháng 3 2021

a) f' (x)=3x2-6x

f'' (x)=6x-6;f'' (x)=0 < ⇒ x=1 ⇒ f (1) = -1

Vậy I(1; -1)

b) Công thức chuyển hệ trục tọa độ trong phép tịnh tiến theo vectơ OI:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

  

Phương trình của (C) đối với hệ trục IXY là:

y - 1 = (X+1)3-3(X+1)2+1 hay Y=X3-3X

Vì hàm số Y=X3-3X là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ I làm tâm đối xứng.

c) * Tiếp tuyến với (C) tại I(1; -1) đối với hệ tọa độ Oxy là:

y = f' (1)(x-1)+f(1) với f’(1) = -3; f(1) = -1

Nên Phương trình tiếp tuyến: y= -3(x-1)+(-1) hay y = -3x + 2

Xét hiệu (x3-3x2+1)-(-3x+2)=(x-1)3

Với x ∈(-∞;1) ⇒ (x-1)3<0 ⇔ x3 – 3x2 + 1 < -3x +2 nên đường cong (C): y=x3-33+1 nằm phía dưới tiếp tuyến y = -3x + 2

Với x ∈(1; +∞) ⇒ (x-1)3>0 ⇔ x3 – 3x2 + 1 > -3x + 2 nên đường cong (C): nằm phía trên tiếp tuyến tại I.