Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)
\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
mà \(-2\sqrt{105}>-2\sqrt{120}\)
nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)
\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)
mà \(4< 6\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)
a ) \(\sqrt{37}\) và \(6\)
Ta có : \(6=\sqrt{36}\)
mà \(\sqrt{36}< \sqrt{37}\)
\(\Rightarrow\sqrt{37}>6\)
b ) \(2\sqrt{3}\) và \(3\sqrt{2}\)
Ta có : \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
mà : \(\sqrt{12}< \sqrt{18}\)
\(\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
c ) \(\sqrt{63}+\sqrt{35}\) và \(14\)
Ta có : \(\sqrt{63}< \sqrt{64}=8\) và \(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{63}+\sqrt{35}< 8+6=14\)
Đặt \(a=\sqrt{27}+\sqrt{37}\); \(b=\sqrt{127}\)
Ta có: \(a^2=27+2\sqrt{27.37}+37=64+2\sqrt{999}\); \(b^2=127\)
Trừ cả a2 và b2 cho 64 ta có:
\(a^2-64=2\sqrt{999}\) ; \(b^2-64=127-64=63\)
Bình phương cả a2 - 64 và b2 - 64 ta có:
\(\left(a^2-64\right)^2=4.999=3996\); \(\left(b^2-64\right)^2=63^2=3969\)
Vì 3996 > 3969 nên:
\(\left(a^2-64\right)^2>\left(b^2-64\right)^2\)
=> a > b
Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)
\(\text{vì }\sqrt{37}< \sqrt{62}\text{ nên }-\sqrt{37}>-\sqrt{62}\)