K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2024

Số chính phương là gì?.??

30 tháng 11 2024

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4

Ta chứng minh p + 1 là số chính phương

Giả sử p + 1 là số chính phương. Đặt p + 1 = m2

Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ

Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4

Ta chứng minh p – 1 là số chính phương

Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2

Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương

Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương(đpcm)

1 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

11 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

12 tháng 1 2020

Giả sử p-1 không là số chính phương

Vì p là tích 2016 số nguyên tố đầu , trong đó có chứa thừa số 3

=> p chia hết cho 3

=> p-1 có dạng 3k - 1 , p+1=3k+1 (k thuộc N)

nhưng 3k+1 , 3k-1 ko có dạng là số chính phương

=> điều giả sử là sai

=> p-1 , p+1 ko là số chính phương

13 tháng 3 2019

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!

6 tháng 4 2018

 vì tích của các số nguyên tố nên tích đó ko là số chính phương

=>p-1 ko là số chính phương

=>p+1 ko là số chính phương

vậy p+1 và p-1 ko là số chính phương

12 tháng 11 2018

vì tích của các số nguyên tố nên tích đó không là số chính phương

=> p - 1 không là số chính phương 

=> p + 1 không là số chính phương 

vậy p + 1 và p - 1 không là số chính phương

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 ﴾*﴿ Ta chứng minh p+1 là số chính phương: Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² ﴾m∈N﴿ Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. Đặt m = 2k+1 ﴾k∈N﴿. Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k﴾k+1﴿ chia hết cho 4. Mâu thuẫn với ﴾*﴿ Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương Ta chứng minh p‐1 là số chính phương: Ta có: p = 2.3.5… là số chia hết cho 3 => p‐1 có dạng 3k+2. Vì không có số chính phương nào có dạng 3k+2 nên p‐1 không là số chính phương . Vậy nếu p là tích n số nguyên tố đầu tiên thì p‐1 và p+1 không là số chính phương ﴾đpcm﴿ 

láo lớp 6 làm gì đã học số chính phương