Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
\(1.3n+1\inƯ\left(10\right)\)
Ta lập bảng xét giá trị
3n+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
3n | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
n | 0 | -2/3 | 1/3 | -1 | 4/3 | -2 | 3 | -11/3 |
\(2.13⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta lập bảng xét g trị
3n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2/3 | 4 | -14/3 |
\(3.2n+8⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 | 7 | -7 |
2n | 0 | -2 | 6 | -8 |
n | 0 | -1 | 3 | -4 |
\(4.6n+6⋮2n+1\)
\(\Rightarrow6n+3+1⋮2n+1\)
\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
Ta có: \(3n+2⋮2n-1\)
=>\(6n+4⋮2n-1\)
=>\(6n-3+7⋮2n-1\)
=>\(7⋮2n-1\)
=>\(2n-1\in\left\{1;-1;7;-7\right\}\)
=>\(2n\in\left\{2;0;8;-6\right\}\)
=>\(n\in\left\{1;0;4;-3\right\}\)
Ta có: 3n+2 chia hết cho 2n-1
2(3n+2) chia hết cho 2n-1
6n+4 chia hết cho 2n-1
6n-3+7 chia hết cho 2n-1
3(2n-1)+7 chia hết cho 2n-1
Mà 3(2n-1) chia hết cho 2n-1
Suy ra 7 chia hết cho 2n-1
Suy ra 2n-1 ϵ Ư(7)={-7; -1; 1; 7}
Suy ra 2n ϵ {-6; 0; 2; 8}
Suy ra n ϵ {-3; 0; 1; 4}
Thử lại: (phải thử lại vì ta đã nhân 3n+2 với 2)
+) n= -3
3*-3 + 2= -9 + 2= -7
2*-3 -1= -6 -1= -7
-7 chia hết cho -7 (thỏa mãn)
+) n= 0
3*0 + 2= 0 + 2= 2
2*0 -1= 0 -1= -1
2 chia hết cho -1 (thỏa mãn)
+)n= 1
3*1 + 2= 3 + 2= 5
2*1 -1= 2 -1= 1
5 chia hết cho 1 (thỏa mãn)
+)n= 4
3*4 + 2= 12 + 2= 14
2*4 -1= 8 -1= 7
14 chia hết cho 7 (thỏa mãn)
Vậy n ϵ {-3; 0; 1; 4}