Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:
4n+3 chia hết cho d
2n+3 chia hết cho d => 4n+6 chia hết cho d
=> 4n+6-(4n+3) chia hết cho d
=> 3 chia hết cho d
Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1
=> 2n+3 chia hết cho 3
=> 2n+3+3 chia hết cho 3
=> 2n+6 chia hết cho 3
=> 2(n+3) chia hết cho 3
=> n+3 chia hết cho 3
=> n = 3k - 3
Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
Gọi ƯCLN(a;b) =d ( d thuộc N )
=> 4n+5 chia hết cho d => 20n+25 chia hết cho d
5n+3 chia hết cho d 20n+12 chia hết cho d
=> 13 chia hết cho d => d = 13
Vậy ƯCLN(a;b) là 13
Gọi ƯCLN(a,b)=d
Ta có: \(a⋮d\)và \(b⋮d\)
Do đó: \(5a⋮d\)và \(4b⋮d\)
Suy ra: \(5a-4b⋮d\)
Hay 20n+15-20n-4=\(11⋮d\)
Nên \(d\in\left\{1;11\right\}\)
Vậy ƯCLN(a,b)=11
Gọi UCLN\(\left(4n+3,5n+1\right)=d\)
Ta có:\(\hept{\begin{cases}4n+3⋮d\\5n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+1\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+4⋮d\end{cases}}\)
\(\Rightarrow\left(20n+15\right)-\left(20n+4\right)⋮d\)
\(\Rightarrow11⋮d\)
\(\Rightarrow d\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)
Vì a,b không phải nguyên tố cùng nhau nên có UCLN=11
Để 6n+1 chia hết cho 4n-1 thì \(\frac{6n+1}{4n-1}\)nguyên
Ta có: \(\frac{6n+1}{4n-1}\) nguyên khi \(\frac{2\left(6n+1\right)}{4n-1}\)nguyên
\(\Leftrightarrow\frac{2\left(6n+1\right)}{4n-1}=\frac{12n+2}{4n-1}=\frac{3\left(4n-1\right)+5}{4n-1}=3+\frac{5}{4n-1}\)
Do đó đẻ 6n+1 chia hết cho 4n-1 thì 4n-1 thuộc ước của 5
Từ đó ta suy ra các giá trị của n thỏa mãn n=0
Vậy với n=0 thì 6n+1 chia hết cho 4n-1
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
giả sử n=1 thì
n.(n+1)=1.(1+1)=1.2=2
4n+1=1.4+1=4+1=5
ƯCNN(1,5)=10