Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
viết thiếu rùi bạn phải thêm BC là đường kính của đường tròn nữa
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet (O) có
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
góc ADC=góc ABH
=>ΔACD đồng dạng với ΔAHB
=>AC/AH=AD/AB và góc CAD=góc HAB
=>AC*AB=AD*AH và góc CAH=góc BAD
b: Xét tứ giác ABHE có
góc AHB=góc AEB=90 độ
=>ABHE là tứ giác nội tiếp
=>góc AHE=góc ABE
=>góc AHE+góc HAC=90 độ
=>HE vuông góc AC
Xét tứ giác AHFC có
góc AHC=góc AFC=90 độ
=>AHFC là tứ giác nội tiếp
=>góc HFA=góc HCA
=>góc HFA+góc BAD=90 độ
=>HF vuông góc AB
![](https://rs.olm.vn/images/avt/0.png?1311)
Vẽ đường kính AK
+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)
+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900
Có: ^KBC + ^CBA = ^ABK = 900 (cmt)
^BAH + ^CBA = 900 (∆ABH vuông tại H)
Từ đó suy ra ^KBC = ^BAH (2)
Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)
Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)
Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)
Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)
Từ (1), (2), (3) => đpcm
Gọi AD là đường kính của (O)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
\(\widehat{ABH}=\widehat{ADC}\)
Do đó: ΔAHB~ΔACD
=>\(\dfrac{AH}{AC}=\dfrac{AB}{AD}\)
=>\(AB\cdot AC=AH\cdot AD=2R\cdot AH\)
A B C H E D M
Ta có
\(S_{ABC}=\dfrac{BC.AB.AC}{4R}=\dfrac{BC.AH}{2}\Rightarrow AB.AC=2R.AH\)