Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\frac{x-7}{2}< 0\)
\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)
\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)
\(S=\left\{xlx< 7\right\}\)
2)\(\)Đề biểu thức sau nhân giá trị âm thì :
\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)
\(S=\left\{xlx< 3\right\}\)
3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:
\(x^2+x\ge0\)
\(\Leftrightarrow x\left(x+1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)
\(S=\left\{xlx\ge-1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để \(\frac{11}{\sqrt{x}-5}\) nhận giá trị nguyên thì \(\sqrt{x}-5\in\left\{\pm1;\pm11\right\}\)
Cần chú ý \(\sqrt{x}-5\ge-5\) nên \(\sqrt{x}-5\in\left\{-1;1;11\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\)
\(\Rightarrow x\in\left\{16;36;256\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
![](https://rs.olm.vn/images/avt/0.png?1311)
A =\(\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\).Để\(A\in Z\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)mà\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Bạn ko hiểu thì hỏi nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\)
Để \(A\in Z\) , thì :
\(\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)
Mà : \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
Vậy .....................
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))
Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có :
\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))
Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)
Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có :
\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{3\left(x+2\right)-4}{x+2}\)\(=3-\frac{4}{x+2}\)
Để B nhận giá trị nguyên thì \(x-2\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)
Với \(x+2=-4\Rightarrow x=-6\)
\(x+2=-2\Rightarrow x=-4\)
\(x+2=-1\Rightarrow x=-3\)
\(x+2=1\Rightarrow x=-1\)
\(x+2=2\Rightarrow x=0\)
\(x+2=4\Rightarrow x=2\)
ta có : \(\frac{6x+2}{x+2}=\frac{6}{x+2}+1\)
Để B nguyên thì \(6⋮x+2\) \(\Rightarrow\left(x+2\right)\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
ta có :
x+2 | x |
-1 | -3 |
-2 | -4 |
-3 | -5 |
-6 | -8 |
1 | -1 |
2 | 1 |
3 | 2 |
6 | 5 |
5<=x<35
=>5+2<=x+2<35+2
=>7<=x+2<37
Để P là số nguyên thì \(\sqrt{x+2}⋮2\)
=>\(x+2\) là số chính phương chẵn
mà 7<=x+2<37
nên x+2=16
=>x=14
ai giải đc cho 5 tỉ