\(A=\frac{\sqrt{x}}{\sqrt{x+2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

\(A=\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\)

Để \(A\in Z\) , thì :

\(\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)

Mà : \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+2\ge2\)

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

Vậy .....................

17 tháng 3 2017

10

9 tháng 10 2016

A =\(\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\).Để\(A\in Z\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

Bạn ko hiểu thì hỏi nhé!

30 tháng 5 2016

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

4 tháng 2 2019

Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)

a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)

b) Theo kết quả câu a) khi x = 1/4  thì A = -1

Vậy x = 1/4

c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.

Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Đến đây bí.

14 tháng 5 2017

a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Vậy \(A=7\)

Thay \(x=\frac{25}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

Vậy \(A=4\)

23 tháng 9 2019

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)

Để A là số nguyên thì \(\frac{7}{\sqrt{x}-5}\) là số nguyên

\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)

Auto làm nốt

19 tháng 8 2021

Mình sửa đề, căn x thôi nha chứ ko phải căn x+2 với căn x-3 đâu

19 tháng 8 2021

\(ĐK:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

Ta có : \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)

Để A nguyên thì \(\frac{5}{\sqrt{x}-3}\)nguyên hay \(\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

đến đây thì dễ rồi bạn tự lập bảng xét nhé ;)

2 tháng 11 2019

a) để bt trên là sn 

=> \(3⋮\sqrt{x+1}\)

=>\(\sqrt{x+1}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

ta có bảng

\(\sqrt{x+1}\)1-13-3
x\(\varnothing̸\)(vì x e Z02\(\varnothing̸\)(vì x e Z

=> \(x\in\left\{0;2\right\}\)

2 tháng 11 2019

để biểu thức B nhận giá trị nguyên 

=>\(5⋮1-2\sqrt{x}\)

=>\(1-2\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

ta có bảng

\(1-2\sqrt{x}\)1-15-5
x0\(\varnothing\)\(\varnothing\)\(\varnothing\)

vậy x=0