K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 giờ trước (14:15)

vì 2023+4x = 2027 => 4x = 2027 - 2023 => 4x = 4 => x = 1

18 giờ trước (14:18)

2023 + 4\(^{x-4}\) = 2027

            4\(^{x-4}\) = 2027 - 2023

           4\(^{x-4}\) = 4

            4\(^{x-4}\) = 41

             \(x-4\) = 1

                \(x=1+4\)

               \(x=5\)

Vậy \(x=5\) 

AH
Akai Haruma
Giáo viên
25 tháng 3 2023

Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$

$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$4A=\frac{1}{4}(1-3^{2024})$

$A=\frac{1}{16}(1-3^{2024})$

8 tháng 1

\(\left(2x+4\right)^{2024}+\left(\left|3y-9\right|\right)^{2023}=0\) (*) 

Ta có: \(\left(2x+4\right)^{2024}\ge0\forall x\) (vì có số mũ chẵn) (1)

\(\left(\left|3y-9\right|\right)^{2023}\ge0\forall y\) (vì giá trị tuyệt đối luôn ≥0) (2) 

Từ (1) và (2) ta có: 

\(\Rightarrow\left\{{}\begin{matrix}2x+4=0\\3y-9=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

Vậy: ... 

31 tháng 10 2023

G = 1 + 1/4 + 1/4² + ... + 1/4²⁰²³

⇒ 4G = 4 + 1 + 1/4 + ...+ 1/4²⁰²²

⇒ 3G = 4G - G

= (4 + 1 + 1/4 + ... + 1/4²⁰²²) - (1 + 1/4 + 1/4² + ... + 1/4²⁰²³)

= 4 - 1/4²⁰²³

⇒ G = (4 - 1/4²⁰²³)/3

18 tháng 4 2023

A = |\(x\) + 5| + 2023

|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5

B = (\(x+2\))2 - 2023

(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023  xảy ra khi \(x\) = -2

C = \(x^2\) - 6\(x\) + 20

C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11

C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11

C = (\(x-3\))(\(x\)-3) + 11

C = (\(x-3\))2 + 11

(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)

18 tháng 4 2023

D = \(x^2\) + 10\(x\) - 25

D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55

D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50

D = \(x\)(\(x\) + 5) + 5(\(x\) + 5)  - 50

D = (\(x\) +5)(\(x\) + 5) - 50

D = ( \(x\) + 5)2 - 50

(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5

 

29 tháng 3 2023

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

29 tháng 3 2023

giup mik nhiều quá hihi

a: A=(-2023)*(-78)*41*(-64)

A có 3 số âm, 1 số dương

=>A<0

b: 3*x

Nếu x>0 thì 3x>0

Nếu x<0 thì 3x<0

c: Nếu x>0 thì (-7)x<0

Nếu x<0 thì (-7)x>0

d: (-1)^2023*(-2)^10=-1024<0

Do (2023−�)2≥0 với mọi  nên:

3(�−3)2=16−(2023−�)2≤16<18

⇒(�−3)2<6

Mà (�−3)2≥0 và (�−3)2 là số chính phương với mọi  nguyên.

⇒(�−3)2=0 hoặc (�−3)2=4

Nếu (�−3)2=0 thì �=3.

Khi đó: (2023−�)2=16−3.02=16

⇒2023−�=4 hoặc 2023−�=−4

⇒�=2019 hoặc �=2027

Nếu (�−3)2=4⇒�−3=2 hoặc �−3=−2

⇒�=5 hoặc �=1
Khi đó:

(2023−�)2=16−3.4=4=22=(−2)2
⇒2023−�=2 hoặc 2023−�=−2

⇒�=2021 hoặc 

9 tháng 4 2020

Yêu cầu đề bài là gì vậy bạn?

31 tháng 10 2023

sossososo

:)))

31 tháng 10 2023

Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)

\(B=5^{2022}\left(5^2+5+1\right)\)

\(B=31.5^{2022}⋮31\)

Vậy \(B⋮31\) (đpcm)