Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{4x^5y^2+2x^4y-6x^3y^2+3xy^4-y^5}{2x^2+xy-y^2}\)
\(=\frac{y\left(4x^5y+2x^4-6x^3y+3xy^3-y^4\right)}{\left(2x-y\right)\left(x+y\right)}\)
\(A=\left(9xy^2-6x^2y\right):\left(-3xy\right)+\left(6x^2y+2x^4\right):\left(2x^2\right)\)
\(=-3y+2x+3y+2x\)
\(=4x\)
Biểu thức không có GTNN
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
a: \(\dfrac{x^2-xy+y^2}{x^2+2xy+y^2}\cdot\dfrac{x^2+3xy+2y^2}{x^2-3xy+2y^2}\)
\(=\dfrac{x^2-xy+y^2}{\left(x+y\right)^2}\cdot\dfrac{\left(x+2y\right)\left(x+y\right)}{\left(x-2y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x^2-xy+y^2\right)\left(x+2y\right)}{\left(x-2y\right)\left(x^2-y^2\right)}\)
b: \(\dfrac{x^2+1}{3x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
\(=\dfrac{x-1}{3x}\cdot\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{\left(x+1\right)^2}\)
\(=\dfrac{x\left(x+1\right)}{3x\left(x+1\right)^2}=\dfrac{1}{3\left(x+1\right)}\)
\(A=4x^2+12xy+9y^2\)
\(B=25x^2-10xy+y^2\)
\(C=8x^3+12x^2y^2+6xy^4+y^6\)
\(D=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4y^2}{25}\)
\(E=x^3-27y^3\)
\(F=x^6-27\)
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
(6\(x^2\)y - 2\(xy\)) : 2
6\(x^2\)y: 2 - 2\(xy\) : 2
3\(x^2\)y - \(xy\)
b; 3\(xy\)(2\(x+5y\)) - 2\(x\)(3\(xy-y^2\))
= 6\(x^2\)y + 15\(xy^2\) - 6\(x^2\)y + 2\(xy^2\)
= (6\(x^2\)y - 6\(x^2\)y) + (15\(xy^2\) + 2\(xy^2\))
= 0 + 15\(xy^2\) + 17\(x\)y2
= 15\(xy^2\) + 17\(x\)y2
a) (6x²y - 2xy) : 2
= 6x²y : 2 - 2xy : 2
= 3x²y - xy
b) 3xy(2x + 5y) - 2x(3xy - y²)
= 6x²y + 15xy² - 6x²y + 2xy²
= (6x²y - 6x²y) + (15xy² + 2xy²)
= 17xy²