Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2+12xy+9y^2\)
\(B=25x^2-10xy+y^2\)
\(C=8x^3+12x^2y^2+6xy^4+y^6\)
\(D=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4y^2}{25}\)
\(E=x^3-27y^3\)
\(F=x^6-27\)
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
Ta có: \(\frac{4x^5y^2+2x^4y-6x^3y^2+3xy^4-y^5}{2x^2+xy-y^2}\)
\(=\frac{y\left(4x^5y+2x^4-6x^3y+3xy^3-y^4\right)}{\left(2x-y\right)\left(x+y\right)}\)
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
\(A=\left(9xy^2-6x^2y\right):\left(-3xy\right)+\left(6x^2y+2x^4\right):\left(2x^2\right)\)
\(=-3y+2x+3y+2x\)
\(=4x\)
Biểu thức không có GTNN
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
(6\(x^2\)y - 2\(xy\)) : 2
6\(x^2\)y: 2 - 2\(xy\) : 2
3\(x^2\)y - \(xy\)
b; 3\(xy\)(2\(x+5y\)) - 2\(x\)(3\(xy-y^2\))
= 6\(x^2\)y + 15\(xy^2\) - 6\(x^2\)y + 2\(xy^2\)
= (6\(x^2\)y - 6\(x^2\)y) + (15\(xy^2\) + 2\(xy^2\))
= 0 + 15\(xy^2\) + 17\(x\)y2
= 15\(xy^2\) + 17\(x\)y2
a) (6x²y - 2xy) : 2
= 6x²y : 2 - 2xy : 2
= 3x²y - xy
b) 3xy(2x + 5y) - 2x(3xy - y²)
= 6x²y + 15xy² - 6x²y + 2xy²
= (6x²y - 6x²y) + (15xy² + 2xy²)
= 17xy²