Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
x4y4+4=[(x2y2)2+2.x2y2.2+22]-4x2y2
=(x2y2+2)2-(2xy)2
bạn tính nốt đi, câu 2, 4, 6 tương tự
câu 4 khá dài bạn lấy số đấy chia cho (x+1) ra nháp rồi tính ngược lại sẽ ra
1: \(=x^4y^4+4+4x^2y^2-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)
\(=\left(x^2y^2+2xy+2\right)\left(x^2y^2-2xy+2\right)\)
2: \(=x^4y^4+16x^2y^2+64-16x^2y^2\)
\(=\left(x^2y^2+8\right)^2-16x^2y^2\)
\(=\left(x^2y^2+8-4xy\right)\left(x^2y^2+8+4xy\right)\)
3: \(=x^4+4x^2+4-x^2\)
\(=\left(x^2+2\right)^2-x^2\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
4: \(=4x^4y^4+1+4x^2y^2-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2+1-2xy\right)\left(2x^2y^2+1+2xy\right)\)
6: \(=x^4+4y^4+4x^2y^2-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2+2xy\right)\left(x^2+2y^2-2xy\right)\)
1. x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
2. 4x2 + 4x - 3
= ( 4x2 + 4x + 1 ) - 4
= ( 2x + 1 )2 - 2
= ( 2x + 1 - 2 )( 2x + 1 + 2 )
= ( 2x - 1 )( 2x + 3 )
3. x2 - x - 12
= x2 + 3x - 4x - 12
= x( x + 3 ) - 4( x + 3 )
= ( x + 3 )( x - 4 )
4. 3x + 3y - x2 - 2xy - y2
= ( 3x + 3y ) - ( x2 + 2xy + y2 )
= 3( x + y ) - ( x + y )2
= ( x + y )( 3 - x - y )
5. 4y4 + 16
= 4( y4 + 4 )
= 4( y4 + 4y2 + 4 - 4y2 )
= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]
= 4[ ( y2 + 2 )2 - ( 2y )2 ]
= 4( y2 - 2y + 2 )( y2 + 2y + 2 )
a,\(x^2-16-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-16\)
\(=\left(x-2y\right)^2-4^2\)
\(=\left(x-2y-4\right)\left(x-2y+4\right)\)
b,\(4x^2+4x-3\)
\(=4x^2-2x+6x-3\)
\(=\left(4x^2-2x\right)+\left(6x-3\right)\)
\(=2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
c,\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2+3x\right)-\left(4x-12\right)\)
\(=x\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)
\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
https://olm.vn/hoi-dap/detail/108858274535.html
Bài tương tự gưi link ib
\(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\)
<=> \(\hept{\begin{cases}x^3+8y^3=0\left(1\right)\\x^3-8y^3=16\left(2\right)\end{cases}}\)
Lấy (1) + (2) theo vế
=> 2x3 = 16
=> x3 = 8 = 23
=> x = 2
Thế x = 2 vào (1)
=> 23 + 8y3 = 0
=> 8 + 8y3 = 0
=> 8y3 = -8
=> y3 = -1 = (-1)3
=> y = -1
Vậy \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Bài 1:
a) -16 +(x-3)2
<=> (x-3)2-16
<=> (x-3)2 -42
<=> (x-3-4)(x-3+4)
<=> (x-7)(x+1)
b) 64+16y+y2
<=> y2 + 2.8.y + 82
<=> (y+8)2
c) \(\dfrac{1}{8}-8x^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)
d)\(x^2-x+\dfrac{1}{4}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)
e) x4 + 4x2 + 4
<=> (x2)2 + 2.2.x2 +22
<=> (x2 + 2)2
g)\(8x^3+60x^2y+150xy^2+125y^3\)
\(\Leftrightarrow\left(2x+5y\right)^3\)
1
a) x2 + 4y2 + 4xy - 16
=(x2 + 4xy + 4y2) - 16
=(x+2y)2 - 16
=(x+2y-4)(x+2y+4)
b)x2 + y2 - 2x + 4y + 5 =0
<=> x2 - 2x + 1 + y2 - 4y + 4=0
<=> (x-1)2 + (y-2)2 =0
<=> x=1 và y=2
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+8y^3=0\\x^3-8y^3=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^3=8\\y^3=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)
= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)
= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)
= \(\left(x-y-5\right)\left(9x+y-5\right)\)
b) \(x^3+3x^2+3x+1-27z^3\)
= \(\left(x+1\right)^3-27z^3\)
= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)
c) \(x^2-2xy+y^2-xz+yz\)
= \(\left(x-y\right)^2-z\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y-z\right)\)
d) \(a^3x-ab+b-x\)
= \(x\left(a^3-1\right)-b\left(a-1\right)\)
= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)
f) \(x^2+2x-4y^2-4y\)
= \(x^2+2x+1-\left(4y^2+4y+1\right)\)
= \(\left(x+1\right)^2-\left(2y+1\right)^2\)
= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)
= \(\left(x-2y\right)\left(x+2y+2\right)\)
g) \(xy-4+2x-2y\)
= \(y\left(x-2\right)-2\left(x-2\right)\)
= \(\left(x-2\right)\left(y-2\right)\)
Cho mình hỏi bài này với
Yo có ai ko