\(^{ }\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Tự vẽ hình

a, Áp dụng định lý pytago vào tam giác ABH vuông tại H và AcH vuông tại H ta có:

 \(BH^2+AH^2=AB^2\Rightarrow BH^2=AB^2-AH^2\left(1\right)\)

\(\text{C}H^2+AH^2=A\text{C}^2\Rightarrow\text{C}H^2=A\text{C}^2-AH^2\left(2\right)\)

Mà AB > AC (3)

Từ (1),(2),(3) => BH > CH

b, Làm tương tự Câu a

16 tháng 4 2017

ai giúp mk với nè , tối học rồi

17 tháng 4 2017

a, h(x)=-4x+8

b, Tìm nghiệm của h(x) thì

h(x)=-4x+8=0\(\Rightarrow\)-4x=-8\(\Rightarrow\)x=2

17 tháng 4 2017

H(x) = ( 3x^3 - x^3 - x^3 ) + ( 5x^2 - 5x^2 ) + ( - 5x + x ) + 8

= -4x + 8

N : -4x + 8 = 0

-4x = -8

x= 2

\(H\left(x\right)=9x^4-3x^3-11x^2-7x+12\)

\(K\left(x\right)=-8x^4+10x^3+4x^2-7x-12\)

\(A\left(x\right)=H\left(x\right)-K\left(x\right)\)

\(=17x^4-10x^3-15x^2+24\)

Để \(A\left(x\right)=x^4-13x^3-14x^2\) nên \(17x^4-10x^3-15x^2+24=x^4-13x^3-14x^2\)

\(\Leftrightarrow16x^4+3x^3-x^2+24=0\)

Đến đây mình bí rồi, xin lỗi bạn!

29 tháng 6 2017

thì ra anh quý mình đây cũng lười biếng đó chứ

29 tháng 6 2017

do tao viết sai đề nên giải cả buổi ko ra

13 tháng 8 2017

1.a. \(3^2-2x-5=0\Rightarrow-2x=0-9+5=-4\)

\(\Rightarrow-x=-\dfrac{4}{2}=-2\Rightarrow x=2\)

Vậy x nghiệm của đa thức \(3^2-2x-5\) là 2

b. \(x^2-5x+4=0\Rightarrow x=\dfrac{-\left(-5\right)\pm\sqrt{\left(-5\right)^2-4\cdot1\cdot4}}{2\cdot1}=\dfrac{5\pm\sqrt{25-16}}{2}=\dfrac{5\pm\sqrt{9}}{2}=\dfrac{5\pm3}{2}=\left[{}\begin{matrix}\dfrac{5+3}{2}=\dfrac{8}{2}=4\\\dfrac{5-3}{2}=\dfrac{2}{2}=1\end{matrix}\right.\)

Vậy nghiệm của đa thức \(x^2-5x+4\) là 1 hoặc 4

c. \(x^2+4x+7=0\Rightarrow x=\dfrac{-4\pm\sqrt{4^2-4\cdot1\cdot7}}{2\cdot1}=\dfrac{-4\pm\sqrt{16-28}}{2}=\dfrac{-4\pm\sqrt{-12}}{2}\Rightarrow x\notin Z\)

Vậy \(x\notin Z\)

2.a. \(P\left(x\right)=3\cdot x^4-x^3+4x^2+2x+1=3x^4-x^3+4x^2+2x+1\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^4-x^3+4x^2+2x+1\right)+\left(-2x^4-x^2+x-2\right)\)

\(=3x^4-x^3+4x^2+2x+1-2x^4-x^2+x-2\)

\(=x^4-x^3+3x^2+3x-1\)

Vậy \(P\left(x\right)+Q\left(x\right)=x^4-x^3+3x^2+3x-1\)

b. \(Q\left(x\right)-H\left(x\right)=-2x^4-2\)

\(\Rightarrow-H\left(x\right)=-2x^4-2-Q\left(x\right)\)

\(\Rightarrow-H\left(x\right)=-2x^4-2-\left(-2x^4-x^2+x-2\right)\)

\(\Rightarrow-H\left(x\right)=-2x^4-2+2x^4+x^2-x+2\)

\(\Rightarrow-H\left(x\right)=x^2-x\Rightarrow H\left(x\right)=-x^2+x\)

Vậy \(H\left(x\right)=x^2+x\)

c. \(H\left(x\right)=0\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0 hoặc -1

13 tháng 12 2019

\(f\left(x\right)=2x^2-3x+1.\)

\(f\left(x\right)=2x^2-2x-x+1\)

\(f\left(x\right)=\left(2x^2-2x\right)-\left(x-1\right)\)

\(f\left(x\right)=2x.\left(x-1\right)-\left(x-1\right)\)

\(f\left(x\right)=\left(x-1\right).\left(2x-1\right)\)

+ Thay \(x=-1\) vào \(f\left(x\right)\) ta được:

\(f\left(-1\right)=\left[\left(-1\right)-1\right].\left[2.\left(-1\right)-1\right]\)

\(f\left(-1\right)=\left(-2\right).\left(-3\right)\)

\(f\left(-1\right)=6.\)

+ Thay \(x=2\) vào \(f\left(x\right)\) ta được:

\(f\left(2\right)=\left(2-1\right).\left(2.2-1\right)\)

\(f\left(2\right)=1.3\)

\(f\left(2\right)=3.\)

+ Thay \(x=-\frac{1}{2}\) vào \(f\left(x\right)\) ta được:

\(f\left(-\frac{1}{2}\right)=\left[\left(-\frac{1}{2}\right)-1\right].\left[2.\left(-\frac{1}{2}\right)-1\right]\)

\(f\left(-\frac{1}{2}\right)=\left(-\frac{3}{2}\right).\left(-2\right)\)

\(f\left(-\frac{1}{2}\right)=3.\)

Chúc bạn học tốt!