K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2024

1.

Ta có:

$A=(1+3)+(3^2+3^3)+(3^4+3^5)+....+(3^{98}+3^{99})$

$=(1+3)+3^2(1+3)+3^4(1+3)+....+3^{98}(1+3)$

$=(1+3)(1+3^2+3^4+....+3^{98})=4(1+3^2+3^4+...+3^{98})\vdots 4$

Vậy $A\vdots 4$

AH
Akai Haruma
Giáo viên
27 tháng 10 2024

2.

$A=(1+4)+(4^2+4^3)+....+(4^{58}+4^{59})$

$=(1+4)+4^2(1+4)+....+4^{58}(1+4)$

$=(1+4)(1+4^2+....+4^{58})$

$=5(1+4^2+...+4^{58})\vdots 5$

Mặt khác:
$A=(1+4+4^2)+(4^3+4^4+4^5)+.....+(4^{57}+4^{58}+4^{59})$

$=(1+4+4^2)+4^3(1+4+4^2)+....+4^{57}(1+4+4^2)$

$=(1+4+4^2)(1+4^3+....+4^{57})$

$=21(1+4^3+....+4^{57})\vdots 21$

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

21 tháng 12 2022

`A=4+4^2+4^3+...+4^98 +4^99`

`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`

`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`

`A=4.21+...+4^97 .21`

`A=21.(4+4^97)  \vdots 21`

   `=>Đpcm`

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)

15 tháng 7 2016

k cho mình

15 tháng 7 2016

mình chịu rồi

24 tháng 10 2023

ko bt lm

 

22 tháng 4 2015

giup minh voi sap phai nop roi

18 tháng 1 2018

câu a Achia hết cho 128