Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
A=5.|1-4x|-1
Do|1-4x|\(\ge0\Rightarrow5.\left|1-4x\right|\ge0\Rightarrow5.\left|1-4x\right|-1\ge\)-1
=>MinA=-1
Dấu "=" xảy ra khi |1-4x|=0 <=> 1-4x=0 <=> x=\(\frac{1}{4}\)
b, B=|x|+|x|
Do|x|\(\ge0\Rightarrow\left|x\right|+\left|x\right|\ge0\)
=>Min B=0 \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
c, C=x2+2.|y-2|-1
Do x2\(\ge0;2.\left|y-2\right|\ge0\Rightarrow x^2+2\left|y-2\right|\ge0\)
=>C\(\ge-1\)=> Min C=-1
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
BN TỰ KẾT LUẬN NHA
TK MK NHÉ
Ta có : I3x-1/5I+Ix+2I >= 0 với mọi giá trị của x
=> I3x-1/5I+Ix+2I+2017 >= 0+2017 với mọi x
=> GTNN của A là 2017
\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)
\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)
\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)
\(a,\left(x-1,2\right)^2=4\)
\(\Rightarrow x-1,2=2\)
\(\Rightarrow x=3,2\)
\(b,\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\Rightarrow x=-6\)
\(c,\left(x-5\right)^3=2^6\)
\(\Rightarrow\left(x-5\right)^3=4^3\)
\(\Rightarrow x-5=4\Rightarrow x=9\)
\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
\(\left(x+5\right)^2>=0\forall x\)
=>\(\left(x+5\right)^2-2>=-2\forall x\)
Dấu '=' xảy ra khi x+5=0
=>x=-5
Ta có: (x+5)2 >= 0 với mọi x
suy ra (x+5)2-2 >= -2 với mọi x
hay A >= -2
dấu "=" xảy ra khi (x+5)2=0
x+5=0
x=-5
Vậy A đạt GTNN là -2 với x=-5