Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
ĐKXĐ : \(y>-5\)
Đặt \(\left(x-2\right)^2=a>0\) và \(\frac{1}{\sqrt{y+5}=b}\)
Hệ phương trình đã cho trở thành : \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}4a+2b=6\\a-2b=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5a=5\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=1\end{cases}}\)( Thỏa mãn )
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\\\sqrt{y+5}=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{y+5}=1\\\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}y+5=1\\\orbr{\begin{cases}x=3\\x=1\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=3\\y=-4\end{cases}}\\\hept{\begin{cases}x=1\\y=-4\end{cases}}\end{cases}}}\)
ĐKXĐ : y > -5
Đặt \(\hept{\begin{cases}\left(x-2\right)^2=a\\\frac{1}{\sqrt{y+5}}=b\end{cases}\left(a\ge0;b>0\right)}\)
Hpt đã cho trở thành \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}}\)=> \(a=b=1\left(tm\right)\)
=> \(\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}}=1\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-4\end{cases}}or\hept{\begin{cases}x=1\\y=-4\end{cases}}\)(tm)
Vậy ...
Bài 2 :
\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)
Lấy phương trình (1) - phương trình (2) ta được :
\(2x=6\Leftrightarrow x=3\)
Thay x = 3 vào phương trình (2) ta được :
\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)=\left(3;1\right)\)
a, \(x^2-3x-4=0\)Ta có a - b + c = 1 + 4 - 4 = 0
Vậy pt có 2 nghiệm x = -1 ; x = 4
b, \(\left\{{}\begin{matrix}6x-3y=15\\5x+3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=33\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
sao khó vậy,mình học lớp 9 mà tính mãi chẳng ra đáp án bài này từ lâu rùi
Bài 1 :
\(2+\sqrt{9}=2+3=5\)
Bài 2 :
Với \(x\ge0\)
\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}+7}\right):\frac{5}{\sqrt{x}+7}\)
\(=\frac{\sqrt{x}+7-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}:\frac{5}{\sqrt{x}+7}\)
\(=\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}.\frac{\sqrt{x}+7}{5}=\frac{1}{\sqrt{x}+2}\)
Bài 3 :
\(\hept{\begin{cases}x+2y=4\left(1\right)\\x-2y=0\left(2\right)\end{cases}}\)Lấy (1) - (2) ta được :
\(4y=4\Leftrightarrow y=1\)
Thay y = 1 vào (1) ta được : \(x+2=4\Leftrightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
Từ 2x - y - 2 = 0
ta được y = 2x - 2
Thế vào phương trình dưới ta được
3x2 - x(2x - 2) - 8 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2)(x + 4) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với x = 2 được y = 2
Với x = -4 được y = - 10
Vậy (x;y) = (2;2) ; (-4 ; -10)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m+2=0\)
\(\Delta'=1-\left(-m+2\right)=m+3\)
Để (P) cắt (d) tại 2 điểm pb khi m > -3
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)
Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm)
\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
a) (2x + 1)² - 9x² = 0
(2x + 1)² - (3x)² = 0
(2x + 1 - 3x)(2x + 1 + 3x) = 0
(-x + 1)(5x + 1) = 0
-x + 1 = 0 hoặc 5x + 1 = 0
*) -x + 1 = 0
x = 1
*) 5x + 1 = 0
5x = -1
Vậy:
b) 2x + y = 4
y = 4 - 2x (1)
5x - 4y = 3 (2)
Thế (1) vào (2), ta được:
5x - 4.(4 - 2x) = 3
5x - 16 + 8x = 3
13x = 3 + 16
13x = 19
Thế (3) vào (1), ta được:
Vậy: