K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10

`2/(1xx2xx3) + 2/(2xx3xx4) + ... + 2/(8xx9xx10) `

Ta có: 

`2/(1xx2xx3) = 1/(1xx2) - 1/(2xx3) `

`2/(2xx3xx4) = 1/(2xx3) - 1/(3xx4) `

....

`2/(8xx9xx10) = 1/(8xx9) - 1/(9xx10) `

Nên: `2/(1xx2xx3) + 2/(2xx3xx4) + ... + 2/(8xx9xx10) `

`= 1/(1xx2) - 1/(2xx3) + 1/(2xx3) - 1/(3xx4) + ... +  1/(8xx9) - 1/(9xx10) `

`= 1/2 - 1/90`

`= 22/45`

Vậy ....

 

6 tháng 10

\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}+...+\dfrac{2}{8\times9\times10}\)

\(=\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+\dfrac{1}{4\times5}-\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}-\dfrac{1}{9\times10}\)

\(=\dfrac{1}{1\times2}-\dfrac{1}{9\times10}\)

\(=\dfrac{1}{2}-\dfrac{1}{90}\)

\(=\dfrac{22}{45}\)

10 tháng 4

A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)

A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))

A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)

A = \(\dfrac{16}{99}\)

10 tháng 4

B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)

B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))

B = \(\dfrac{1}{2}\)\(\dfrac{7}{15}\)

B = \(\dfrac{7}{30}\)

10 tháng 7 2017

\(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.4+...+8.9.10.4\)

\(4C=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)

\(4C=1.2.3.4+2.3.4.5+....+8.9.10.11\)

\(\Rightarrow C=\frac{8.9.10.11}{4}=1980\)

10 tháng 7 2017

Ta có : C = 1 x 2 x 3 + 2 x 3 x 4 +...........+ 8 x 9 x 10

=> 4C = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ..... + 8.9.10.11

=> 4C = 8.9.10.11

=> C = \(\frac{8.9.10.11}{4}=1980\)

29 tháng 8 2021

mn ơi giúp mình vs 

29 tháng 8 2021

mình đang cần gấp

30 tháng 4 2016

200 nha

30 tháng 4 2016

200 nha 

nhé

24 tháng 3 2022

Ta có:

\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)

\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\frac{1}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{5}{20}\)

\(A>\frac{1}{4}\)

20 tháng 10

Cyak 3ampo

17 tháng 8 2018

A =1x2x3 + 2x3x4 +3x4x5+....+ 2010 x2011 x 2012

4A =1x2x3x4 + 2x3x4x4 +3x4x5x4+....+ 2010 x2011 x 2012x4

4A =1x2x3x4 + 2x3x4x(5+1) +3x4x5x(6-2)+....+ 2010 x2011 x 2012x(2013-2009)

4A =1x2x3x4 + 2x3x4x5-1x2x3x4+3x4x5x6-2x3x4x5+....+ 2010 x2011 x 2012x2013-2009x2010x2011x2012

4A = 2010 x2011 x 2012x2013

A = \(\frac{2010\times2011\times2012\times2013}{4}\)

17 tháng 8 2018

đặt S=1.2.3+2.3.4+....+18.19.20

4S=1.2.3.4+2.3.4.(5-1)+.......+18.19.20.(21-17)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+......+18.19.20.21-17.18.19.20

4S=....tự làm nha

17 tháng 11 2018

Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)

\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)

\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)

\(=\frac{1}{2}-\frac{1}{992}\)

\(=\frac{495}{992}\)

\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)

17 tháng 11 2018

\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\frac{990}{1984}\)

\(=\frac{990}{3968}=\frac{495}{1984}\)