Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Giải : Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2\left(x+y+z\right)}\)
\(=\frac{x+y+z}{\left(y+z-5\right)+\left(x+z+3\right)+\left(x+y+3\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (vì x + y + z \(\ne\)0)
==> \(\frac{1}{2\left(x+y+z\right)}=\frac{1}{2}\) => \(x+y+z=1\)
==> \(\frac{x}{y+z-5}=\frac{1}{2}\) => \(y+z-5=2x\) => \(x+y+z-5=3x\) => 1 - 5 = 3x => -4 = 3x => \(x=-\frac{4}{3}\)
==> \(\frac{y}{x+z+3}=\frac{1}{2}\) => \(x+z+3=2y\) => \(x+y+z+3=3y\) => \(1+3=3y\) => \(4=3y\)=> \(y=\frac{4}{3}\)
==> \(\frac{z}{x+y+2}=\frac{1}{2}\) => 2z = x + y + 2 => 2z = -4/3 + 4/3 + 2 => 2z = 2 => z = 1
Vậy x,y,z thõa mãn là : \(-\frac{4}{3};\frac{4}{3};1\)
a) \(\frac{x}{2}=\frac{y}{3}\)và \(\frac{y}{5}=\frac{z}{7}\)và \(x+y+z=92\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số = nhau
ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy \(x=20;y=30;z=42\)
Ta có : \(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=x+y+z\)(1)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{y+z-2+x+z-3+x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)(2)
Nếu \(x+y+z=0\)thì từ (1) => x = 0,y = 0,z = 0
Nếu \(x+y+z\ne0\),thì từ (2) suy ra : \(\frac{1}{2}=x+y+z\),khi đó (1) trở thành:
\(\frac{x}{\frac{1}{2}-x-2}=\frac{y}{\frac{1}{2}-y-3}=\frac{z}{\frac{1}{2}-z+5}=\frac{1}{2}\)
Từ đó suy ra \(x=-\frac{1}{2}\),\(y=-\frac{5}{6}\),z = \(\frac{11}{6}\)
Chỗ khi đó (1 ) sai nha bạn phải là ( 2 )
x2=y3=z4x2=y3=z4
\Leftrightarrow2x4=y3=z4=2x+y−z4+3−4=123=42x4=y3=z4=2x+y−z4+3−4=123=4
\Rightarrowx=8
y=12
z=16
bài 2
x2=y5=z7x2=y5=z7
\Rightarrow2y=5x ;x=2,5y ;zx=3,5zx=3,5 ;2y=5x;z=3,5x
\RightarrowA = x-y+z/x+2y-z=x-2,5x+3,5+5x-3,5x=3,5
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
Ta có :
\(\frac{x}{x+y-2}=\frac{y}{x+z+3}=\frac{z}{x+y-5}=x+y+z..\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{x+y-2}=\frac{y}{x+z+3}=\frac{z}{x+y-5}=x+y+z..\)
\(\Leftrightarrow\frac{x+y+z}{x+y-2+x+z+3+x+y-5}=x+y+z.\)
\(\Leftrightarrow\frac{x+y+z}{2x+2y+2z-4}=x+y+z.\)
\(\Leftrightarrow2.\left(x+y+z-2\right)=1.\)
\(\Leftrightarrow x+y+z-2=\frac{1}{2}.\)
\(\Leftrightarrow x+y+z=\frac{1}{2}+2=\frac{5}{2}.\)
trong sách nâng cao và phát triển nhé