Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)
Vậy \(B< 1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)
\(\rightarrow B< 1\rightarrowđpcm\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2^2A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{100}}< 1\Rightarrow3A< 1\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
1/ 3x-1 + 5.3x-1 = 162
3x-1(1 + 5) = 162
3x-1 = \(\frac{162}{6}\)
3x-1 = 27
3x-1 = 33
x - 1 = 3
x = 4
2/ B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
\(\Rightarrow\) 3B = 3.3100 - 3.399 + 3.398 - 3.397 + ... + 3.32 - 3.3 + 3.1
= 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Ta có:
4B = 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100 - 399 + 398 - 397 + ... + 32 - 3 + 1)
= 3101 + 3100 - 3100 + 399 - 399 + 398 - 398 + ... + 3 - 3 + 1
= 3101 + 1
\(\Rightarrow\) B = \(\frac{3^{101}+1}{4}\)
Giải bài toán sau 1 + 1/2 + 1/2 mũ 2 + 1,2 mũ 3 + 1,2 mũ 4 + 3 chấm ba chấm + 1,2 mũ 99 + 1/2 mũ 100
Gọi biểu thức trên là Acó:
A=1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
2A=1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101
2A-A=(1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)
A=1/2^101-1
A=-1