Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{1}{2}+\left[\frac{1}{2}\right]^2+\left[\frac{1}{2}\right]^3+...+\left[\frac{1}{2}\right]^{99}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right]\)
\(A=1-\frac{1}{2^{99}}\)
Do đó A < 1
b, \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(3B-B=\left[1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]-\left[1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right]\)
\(2B=1-\frac{1}{3^{99}}\)
\(B=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
(\(x\) + \(\dfrac{1}{2}\))2 = \(\dfrac{1}{16}\)
\(\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{4}-\dfrac{1}{2}\\x=\dfrac{1}{4}-\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- \(\dfrac{3}{4};-\dfrac{1}{4}\)}
\(x\) : (- \(\dfrac{1}{3}\))3 = - \(\dfrac{1}{3}\)
\(x\) = (-\(\dfrac{1}{3}\)).(-\(\dfrac{1}{3}\))3
\(x\) = \(\dfrac{1}{81}\)
Vậy \(x=\dfrac{1}{81}\)
a
\(A=1+3+3^2+3^3+....+3^{100}\)
\(3A=3+3^2+3^3+3^4+.....+3^{101}\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(B=1-\frac{1}{2^{99}}\)
c
\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)
\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)
\(6C=5^{101}+1\)
\(C=\frac{5^{101}+1}{6}\)
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
\(\frac{2}{3}-\frac{1}{3}.\frac{x-3}{2}-\frac{1}{2}.2.x+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{3.2}-\frac{2.x}{2}+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{6}-x+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{6}-x=4\)
\(\Leftrightarrow\frac{4}{6}-\frac{x-3}{6}-\frac{6x}{6}=4\)
\(\Leftrightarrow\frac{4-\left(x-3\right)-6x}{6}=4\)
\(\Leftrightarrow\frac{4-x+3+6x}{6}=4\)
\(\Leftrightarrow\frac{4+3-x+6x}{6}=\frac{4}{1}\)
\(\Leftrightarrow\frac{7+5x}{6}=\frac{4}{1}\)
\(\Leftrightarrow7+5x=4.6\)
\(\Leftrightarrow7+5x=24\)
\(\Leftrightarrow5x=24-7\)
\(\Leftrightarrow5x=17\)
\(\Leftrightarrow x=\frac{17}{5}\)
Vậy \(x=\frac{17}{5}\)
Chúc bạn học tốt
\(\dfrac{1-1}{1+2}\) + \(\dfrac{1-1}{1+2+3}\)+ ... + \(\dfrac{1-1}{1+2+3+...+2024}\)
= (\(\dfrac{1}{1+2}\) - \(\dfrac{1}{1+2}\)) + (\(\dfrac{1}{1+2+3}\) - \(\dfrac{1}{1+2+3}\)) + ... + (\(\dfrac{1}{1+2+3+...+2024}\) - \(\dfrac{1}{1+2+3+...+2024}\))
= 0 + 0 + ... + 0
= 0