Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a,ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
b,ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Xét tổng ab + ba = (10 x a + b) + (10 x b + a)
= 11 x a + 11 x b
= (a +b) x 11 chia hết cho 11
b) Xét hiệu ab - ba = (10a + b) - (10b + a)
= 9 x a - 9 x b
= (a - b) x 9 chia hết cho 9
3) Gọi 3 chữ số là a;b;c
=> 123abc chia hết cho 1001
123abc = 123.1000 + abc = 123.1001 - 123 + abc = 123.1001 + (abc - 123) chia hết cho 1001
=> abc - 123 chia hết cho 1001 => abc -123 = 1001.k => abc = 1001.k + 123
Chọn k =0 => abc = 123
Chọn k = 1 => abc = 1124 Loại . Từ k > 1 đều không có số nào thỏa mãn
Vậy Viết thêm 3 chữ số là 1;2;3
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !
b) ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
c) aaa = a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37
d) aaabbb=a000bx111
111 chia hết cho 37 nên aaabbb chia hết cho 37
e) ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2
nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2
Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2
Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2
b) Ta có :ab= 10*a + b
ba = 10*b + a
=> ab + ba = 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37
e) ab = 10 . a+b
ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)
=> ab‐ba chia hết cho 9
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
\(a,\) Ta có:
\(\overline{ab}+\overline{ba}\\ =a\cdot10+b+b\cdot10+a\\ =a\cdot\left(10+1\right)+b\cdot\left(1+10\right)\\ =a\cdot11+b\cdot11\\ =11\cdot\left(a+b\right)⋮11\left(đpcm\right)\)
\(b,\) Ta có:
\(\overline{a0b}+\overline{b0a}\\ =a\cdot100+b\cdot1+b\cdot100+a\cdot1\\ =a\cdot\left(100+1\right)+b\cdot\left(1+100\right)\\ =a\cdot101+b\cdot101\\ =101\cdot\left(a+b\right)⋮101\left(đpcm\right)\)
a) Ta có:
\(\overline{ab}+\overline{ba}\\ =\left(10a+b\right)+\left(10b+a\right)\\ =\left(10a+a\right)+\left(b+10b\right)\\ =11a+11b\\ =11\left(a+b\right)\)
=> chia hết cho 11
b) Ta có:
\(\overline{a0b}+\overline{b0a}\\ =\left(a\cdot100+0\cdot10+b\right)+\left(b\cdot100+0\cdot10+a\right)\\ =\left(100a+a\right)+\left(100b+b\right)\\ =101a+101b\\ =101\cdot\left(a+b\right)\)
=> Chia hết cho 101