Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\div\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\)
\(A=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(A=\frac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{-\sqrt{x}-x}{x}\)
\(B=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\frac{x-1}{\sqrt{x}}\)
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)
\(=3\sqrt{xy}\)
b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)
a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)
\(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left[\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}< 1\)
a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)
b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)
mà \(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)
nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)
mà \(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1(nhận)
Vậy: để M>0 thì x>1
\(M=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(M=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(M=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(M=\frac{\sqrt{x}-1}{\sqrt{x}}\)
vậy \(M=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Despacito biết rồi còn hỏi