Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x3 - 24x = 0
⇔ 6x( x2 - 4 ) = 0
⇔ 6x( x - 2 )( x + 2 ) = 0
⇔ 6x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = ±2
b) 2x( x - 3 ) - 4x + 12 = 0
⇔ 2x( x - 3 ) - 4( x - 3 ) = 0
⇔ ( x - 3 )( 2x - 4 ) = 0
⇔ x - 3 = 0 hoặc 2x - 4 = 0
⇔ x = 3 hoặc x = 2
c) 2( x - 2 ) = 3x2 - 6x
⇔ 2( x - 2 ) = 3x( x - 2 )
⇔ 2( x - 2 ) - 3x( x - 2 ) = 0
⇔ ( x - 2 )( 2 - 3x ) = 0
⇔ x - 2 = 0 hoặc 2 - 3x = 0
⇔ x = 2 hoặc x = 2/3
d) x2 - 6x = 16
⇔ x2 - 6x - 16 = 0
⇔ ( x2 - 6x + 9 ) - 25 = 0
⇔ ( x - 3 )2 - 52 = 0
⇔ ( x - 3 - 5 )( x - 3 + 5 ) = 0
⇔ ( x - 8 )( x + 2 ) = 0
⇔ x - 8 = 0 hoặc x + 2 = 0
⇔ x = 8 hoặc x = -2
a) 6x^3-24x=0
<=>6x(x^2-4)=0
<=>6x(x-2)(x+2)=0
<=>6x=0 => x=0
x-2=0 => x=2
x+2=0 => x=-2
b) 2x(x-3)-4x+12=0
<=>2x(x-3)-(4x-12)=0
<=>2x(x-3)-4(x-3)=0
<=>(2x-4)(x-3)=0
<=>2x-4=0 => x=2
x-3=0 => x=3
c) 2(x-2)=3x^2-6x
<=>2(x-2)=3x(x-2)
<=>2=3x
<=>x=2/3
d) x2-6x=16
<=> x^2-6x+9=25
<=>(x-3)^2=25
<=> x-3=5 => x=8
x-3=-5 => x=-2
\(P=xy\left(x+4\right)\left(y-2\right)+6x\left(x+4\right)+5y\left(y-2\right)+243\)
\(=y\left(y-2\right)\left[x\left(x+4\right)+5\right]+6\left[x\left(x+4\right)+5\right]+213\)
\(=y\left(y-2\right)\left(x^2+4x+5\right)+6\left(x^2+4x+5\right)+213\)
\(=\left(x^2+4x+5\right)\left(y^2-2y+6\right)+213\)
\(=\left[\left(x+2\right)^2+1\right].\left[\left(y-1\right)^2+5\right]+213\ge1.5+213=218\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Vậy \(P_{min}=218\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
\(A=19-3x^2-24x\)
\(\Leftrightarrow A=-3\left(x^2+8x-\dfrac{19}{3}\right)\)
\(\Leftrightarrow A=-3\left(x^2+2x.4+16-\dfrac{67}{3}\right)\)
\(\Leftrightarrow A=-3\left[\left(x+4\right)^2-\dfrac{67}{3}\right]\)
\(\Leftrightarrow A=-3\left(x+4\right)^2+67\le67\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-3\left(x+4\right)^2=0\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy Max A là : 67 \(\Leftrightarrow x=-4\)
\(B=-x^2+6x-23\)
\(\Leftrightarrow B=-\left(x^2-6x+9\right)-14\)
\(\Leftrightarrow B=-\left(x-3\right)^2-14\le-14\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Max B là : \(-14\Leftrightarrow x=3\)
\(C=4\left(x-1\right)^2-9\left(x+2\right)^2\)
\(\Leftrightarrow C=4x^2-8x+4-9x^2-36x-36\)
\(\Leftrightarrow C=-5x^2-44x-32\)
\(\Leftrightarrow C=-5\left(x^2+\dfrac{44}{5}x+\dfrac{32}{5}\right)\)
\(\Leftrightarrow C=-5\left(x^2+2x.\dfrac{22}{5}+\dfrac{484}{25}\right)+64,8\)
\(\Leftrightarrow C=-5\left(x+\dfrac{22}{5}\right)^2+64,8\le64,8\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-5\left(x+\dfrac{22}{5}\right)^2=0\Leftrightarrow\left(x+\dfrac{22}{5}\right)^2=0\Leftrightarrow x+\dfrac{22}{5}=0\)
\(\Leftrightarrow x=-\dfrac{22}{5}\)
Vậy Max C là : 64 , 8 \(\Leftrightarrow x=-\dfrac{22}{5}\)
\(E=\left(x+2\right)^2-2x^2+8\)
\(\Leftrightarrow E=x^2+4x+4-2x^2+8\)
\(\Leftrightarrow E=-x^2+4x+12\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+16\)
\(\Leftrightarrow E=-\left(x-2\right)^2+16\le16\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Max E là : \(16\Leftrightarrow x=2\)
a) −x2+6x−15=−(x2−6x+15)=−((x−3)2+6)−x2+6x−15=−(x2−6x+15)=−((x−3)2+6)
= −(x−3)2−6−(x−3)2−6 ≤6<0∀x≤6<0∀x (đpcm)
b) (x−3).(1−x)−2=x−x2−3+3x−2=−x2+4x−5(x−3).(1−x)−2=x−x2−3+3x−2=−x2+4x−5
= −(x2−4x+5)−(x2−4x+5) = −((x−2)2+1)=−(x−2)2−1≤−1<0∀x−((x−2)2+1)=−(x−2)2−1≤−1<0∀x (đpcm)
c) (x+4)(2−x)−10=2x−x2+8−4x−10(x+4)(2−x)−10=2x−x2+8−4x−10
−x2−2x−2=−(x2+2x+2)=−((x+1)2+1)=−(x+1)2−1≤−1<0∀x−x2−2x−2=−(x2+2x+2)=−((x+1)2+1)=−(x+1)2−1≤−1<0∀x(đpcm)
a. -x^2+6x-15=-(x^2-6x+9)+9-15=-(x-3)^2-6<=-6<0
b. -9x^2+24x-18=-(9x^2-2.3.4x+16)+16-18=-93x-4)^2-x<=-2<0
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
1 bài quen thuộc mik đã từng làm
Ta có : \(P=xy\left(x+4\right)\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)
\(=\left(x^2+4x\right)\left(y^2-2y\right)+6\left(x^2+4x\right)+5\left(y^2-2y+6\right)+2013\)
\(=\left(x^2+4x\right)\left(y^2-2y+6\right)+5\left(y^2-2y+6\right)+2013\)
\(=\left(x^2+4x+5\right)\left(y^2-2y+6\right)+2013\ge1.5+2013=2018\)
Dấu " = " xảy ra \(\Leftrightarrow x=-2;y=1\)
\(a,-x^2+6x-15=-\left(x^2-6x+9\right)-6=-\left(x-3\right)^2-6\le-6< 0\)
Vậy đa thức luôn âm với mọi x
\(b,-9x^2+24x-18=-9\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)-2=-9\left(x-\dfrac{4}{3}\right)^2-2\le-2< 0\)
Vậy đa thức luôn âm với mọi x
\(c,\left(x-3\right)\left(1-x\right)-2=-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
Vậy đa thức luôn âm với mọi x
\(d,\left(x+4\right)\left(2-x\right)-10=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1< 0\)
Vậy đa thức luôn âm với mọi x
OÓoeowwlspspspwp