K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8

\(3A=3+3^2+3^3+...+3^{11}\)

\(2A=3A-A=3^{11}-1\Rightarrow A=\dfrac{3^{11}-1}{2}\)

\(4B=4^2+4^3+...+4^{2019}\)

\(3B=4B-B=4^{2019}-4\Rightarrow B=\dfrac{4^{2019}-4}{3}\)

9 tháng 8

a) Ta có A= 1 + 3 + 32 +...+ 310

Suy ra 3A= 3 + 32+...+311

Lấy 3A-A= (3 + 32+...+311)- (1 + 3 + 32 +...+ 310)

Suy ra 2A= 311-1

⇒ A=\(\dfrac{3^{11}-1}{2}\)

30 tháng 9 2017

Giải:

a) Đặt:

\(A=1+2^2+2^3+2^4+...+2^{2018}\)

\(\Leftrightarrow2A=2+2^3+2^4+2^5+...+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^{2019}\right)-\left(1+2^2\right)\)

\(\Leftrightarrow A=2+2^{2019}-1-2^2\)

\(\Leftrightarrow A=2+2^{2019}-5\)

\(\Leftrightarrow A=2^{2019}-3\)

Vậy \(A=2^{2019}-3\).

b) Đặt:

\(B=1+5+5^2+5^3+...+5^{2017}\)

\(\Leftrightarrow5B=5+5^2+5^3+5^4+...+5^{2018}\)

\(\Leftrightarrow5B-B=5^{2018}-1\)

\(\Leftrightarrow4B=5^{2018}-1\)

\(\Leftrightarrow B=\dfrac{5^{2018}-1}{4}\)

Vậy \(B=\dfrac{5^{2018}-1}{4}\).

Chúc bạn học tốt!

26 tháng 10 2017

a)A= 1 + 22+23 + 24 +....+22018

2A = 22 + 23 + 24 +......+22018 + 22019

_

A= 1 + 22+23 + 24 +....+22018

A= 22019 - 1

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

GH
6 tháng 8 2023

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

6 tháng 8 2023

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

24 tháng 9 2017

a)\(A=1+3+3^2+...+3^{2018}\)

\(\Rightarrow3A=3.\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2019}-\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow2A=3^{2019}-1\)

\(\Rightarrow A=\frac{3^{2019}-1}{2}\)

b) \(B=5+5^2+...+5^{2017}\)

\(\Rightarrow5B=5^2+5^3+...+5^{2018}\)

\(\Rightarrow5B-B=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(\Rightarrow4B=5^{2018}-5\)

\(\Rightarrow B=\frac{5^{2018}-5}{4}\)

24 tháng 9 2017

a,A=1+3+32+...+32017

3A=3+32+33+...+32018

3A-A=32018-1

2A=32018-1

A=(32018-1):2

20 tháng 9 2017

Ta có:

A = 1 + 3 + 32 + 33 + ... + 36

3A = 3 + 32 + 33 + ... + 37

3A - A = (3 + 32 + 33 + ... + 37) - 1 + 3 + 32 + 33 + ... + 36

2A = 37 - 1

Ta lại có:

B = (37 - 1) : 2

2B = 37 - 1

Vì 2A = 2b nên A = B.

20 tháng 9 2017

giúp mk bài dưới với ạ

6 tháng 7 2019

tính  tổng hả bạn 

6 tháng 7 2019

vâng bạn 

22 tháng 9 2023

a) \(4^3\cdot32^4\)

\(=\left(2^2\right)^3\cdot\left(2^5\right)^4\)

\(=2^6\cdot2^{20}\)

\(=2^{26}\)

b) \(3^{20}\cdot9^{10}\cdot27^2\)

\(=3^{20}\cdot\left(3^2\right)^{10}\cdot\left(3^3\right)^2\)

\(=3^{20}\cdot3^{20}\cdot3^6\)

\(=3^{46}\)

c) \(3^{10}\cdot7^{10}\)

\(=\left(3\cdot7\right)^{10}\)

\(=21^{10}\)

d) \(6^{15}:6^{14}\)

\(=6^{15-14}\)

\(=6\)

e) \(28^3:7^3\)

\(=4^3\cdot7^3:7^3\)

\(=4^3\)

\(=2^6\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)