Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= - 32\(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{868}\right)\)
S = - 32\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{28.31}\right)\)
S = - 3\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{28.31}\right)\)
S = -3\(\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{28}-\frac{1}{31}\right)\)
S = -3 \(\left(1-\frac{1}{31}\right)\)
S = -3\(.\frac{30}{31}\)
S = -90/31
1/3S=-(1/1*4+1/4*7+1/7*10+...+1/28*31)=-(1/1-1/4+1/4-1/7+1/7-1/10+...+1/28-1/31)=-(1/1-1/31)=-30/31
=>S=(-30/31):1/3=-90/31
\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)
Thay \(a=-\frac{3}{5}\) vào A,ta đc:
\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)
Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)
\(a)\frac{2}{3}x-\frac{1}{2}=\frac{5}{12}\)
\(\Rightarrow\frac{2}{3}x=\frac{5}{12}+\frac{1}{2}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}:\frac{2}{3}=\frac{11}{8}\)
\(b)\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Rightarrow\frac{14}{5}x-50=51.\frac{2}{3}=34\)
\(\Rightarrow\frac{14}{5}x=34+50=84\)
\(\Rightarrow x=84:\frac{14}{5}=30\)
a) 2/3.x - 1/2 = 5/12
2/3.x = 5/12 + 1/2
2/3.x = 11/12
x = 11/12 : 2/3
x = 11/8
b) \(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)
\(\frac{14}{5}.x-50=51.\frac{2}{3}\)
\(\frac{14}{5}.x-50=34\)
\(\frac{14}{5}.x=34+50\)
\(\frac{14}{5}.x=84\)
\(x=84:\frac{14}{5}\)
\(x=30\)
\(\frac{3}{x-5}=\frac{-4}{x+2}\)
\(\Leftrightarrow3\left(x+2\right)=-4\left(x-5\right)\)
\(\Leftrightarrow3x+6=-4x+20\)
\(\Leftrightarrow7x=14\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
\(a,3+3^2+....+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+.....+\left(3^{2009}+3^{2010}\right)\)
\(=3.4+3^3.4+.....+3^{2009}.4\)
\(=4.\left(3+3^3+.....+3^{2009}\right)\)
\(\Rightarrow4.\left(3+3^3+....+3^{2009}\right)⋮4_{\left(1\right)}\)
\(3+3^2+...+3^{2010}\)
\(=\left(3+3^2+3^3\right)+.....+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3.13+....+3^{2008}.13\)
\(=13.\left(3+....+3^{2008}\right)\)
\(\Rightarrow3.\left(3+....+3^{2008}\right)⋮13_{\left(2\right)}\)
\(3+3^2+....+3^{2010}⋮3\) ( thấy rõ )
Từ (1) và (2) => \(3+3^2+...+3^{2010}⋮4;13\)
\(b,5+5^2+...+5^{2010}\)
\(=\left(5+5^2\right)+....+\left(5^{2009}+5^{2010}\right)\)
\(=5.6+....+6.5^{2009}\)
\(=6.\left(5+.....+5^{2009}\right)\)
\(\Rightarrow6.\left(5+....+5^{2009}\right)⋮6_{\left(1\right)}\)
\(5+5^2+...+5^{2010}\)
\(=\left(5+5^2+5^3\right)+.....+\left(5^{2008}+5^{2009}+5^{2010}\right)\)
\(=5.31+.....+31.5^{2008}\)
\(=31.\left(5+....+5^{2008}\right)\)
\(\Rightarrow31.\left(5+...+5^{2008}\right)⋮31_{\left(2\right)}\)
Từ (1) và (2) => \(5+5^2+....+5^{2010}⋮6;31\)
24 - 23 = 16 - 8 = 8
=16-8=8