Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\dfrac{3^6.5^7.7^{11}}{3^4.5^7.7^{10}}=\dfrac{3^4.3^2.5^7.7^{10}.7}{3^4.5^7.7^{10}}\) \(=9.7=63\)
b,\(\dfrac{2^{43}+2^4}{2^{39}+1}=\dfrac{2^{39}.2^4+2^4}{2^{39}+1}\) \(=\dfrac{2^4\left(2^{39}+1\right)}{2^{39}+1}=16\)
a) 7.x - x = 521 : 519 + 3.22 - 70
6x = 25 + 12 - 1
6x = 36
x = 6
b) 7x - 2x = 617 : 615 + 44 : 11
5x = 36 + 4
5x = 40
x = 8
c) 5x + x = 39 - 311 : 39
6x = 39 - 9
6x = 30
x = 5
d) [(6x - 39) : 7]. 4 = 12
(6x - 39) : 7 = 12 : 4
(6x - 39) : 7 = 3
6x - 39 = 3 . 7
6x - 39 = 21
6x = 21 + 39
6x = 60
x = 10
x =
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
a) \(27^7\div9^{10}\)
\(=\left(3^3\right)^7\div\left(3^2\right)^{10}\)
\(=3^{3\times7}\div3^{2\times10}\)
\(=3^{21}\div3^{20}\)
\(=3^1\)
\(=3\)
b) \(125^6\div25^7\)
\(=\left(5^3\right)^6\div\left(5^2\right)^7\)
\(=5^{3\times6}\div5^{2\times7}\)
\(=5^{18}\div5^{14}\)
\(=5^4\)
\(=625\)
c) \(5^{15}\div5^3\)
\(=5^{12}\)
\(=244140625\)
d) \(11^7\div11^3\)
\(=11^4\)
\(=14641\)
e) \(125\div5^2\)
\(=5^2\div5^2\)
\(=5^1\)
\(=5\)
g) \(169\div13^2\)
\(=13^2\div13^2\)
\(=13^1\)
\(=13\)
Bạn ơi trả lời nhanh hộ mình với mình chỉ còn 1 ngày làm bài thôi các bạn ah
ko biết mk làm có đúng ko nhé tham khỏa thôi
A= (62019-62018):62018 B=(72020+72019) : 72019
= 62019 : 62018-62018 : 62018 = 72020:72019+72019:72019
= 61 - 60 =71+70
= 6-1=5 =7+1=8
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30⇔32S−S=32022−30
⇔9S−S=32022−1⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
\(\text{7x - x = 5}^{21}:5^{19}+3.2^2-7^0\)
\(\text{(7-1)x=5}^2\text{ + 3. 4 - 1}\)
\(\text{6x = 25 + 12 - 1}\)
\(\text{6x = 36}\)
\(\text{ x = 6}\)
a)7.x-x=521 :519 +3.22 -70
x.(7-1)=52+12-1
x.6 =36
x =36:6=6
b)7.x-2.x=617:615+44:11
x.(7-2)=62+4
x.5 =40
x=40:5=8
\(A=7^{15}:7^{13}-2020^0\\ \Rightarrow A=7^2-1\\ \Rightarrow A=48.\)