Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)
\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)
b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)
\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)
c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)
\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)
e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
a) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
b) \(\dfrac{45^{15}.5^{15}}{75^{15}}=\dfrac{\left(9.5\right)^{15}.5^{15}}{\left(3.25\right)^{15}}=\dfrac{9^{15}.5^{15}.5^{15}}{3^{15}.25^{15}}=\dfrac{\left(3^2\right)^{15}.5^{30}}{3^{15}.\left(5^2\right)^{15}}\)
\(\dfrac{3^{30}.5^{30}}{3^{15}.5^{30}}=3^{15}=14348907\)
c) \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=\dfrac{2^{20}}{2^{12}}=2^8=256\)
d) \(\dfrac{ \left(x^2\right)^5}{\left(x^5\right)^2}=\dfrac{x^{10}}{x^{10}}=1\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
\(\dfrac{\text{45^{10^{ }}}.5^{10}}{75^{10}}=\dfrac{9^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}=\dfrac{9^{10}}{3^{10}}=3^{10}\)
\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{2^5.\left(0,4\right)^5}{\left(0,4\right)^6}=\dfrac{2^5}{0,4}=\dfrac{32}{0,4}=80\)
a: \(\dfrac{5^5}{5^x}=5^{18}\)
=>5-x=18
hay x=-13
b: \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)
=>4-x=50
hay x=-46
c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)
=>2x-3=49
=>2x=52
hay x=26
d: \(\dfrac{2^3}{2^x}=4^5\)
\(\Leftrightarrow2^{3-x}=2^{10}\)
=>3-x=10
hay x=-7
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
f: \(7\cdot2^x=2^9+5\cdot2^8\)
\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)
\(\Leftrightarrow2^x=2^8\)
hay x=8
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
b. \(\left(\dfrac{3^2}{9}.\dfrac{3^3}{81}\right)^{12}:\left(\dfrac{3^6}{81^2}\right)^{10}\)
\(=\left(1.\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^6:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{9}\right)^6:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{9}\right)^{-4}=6561\)
a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
\(a,\text{ }\dfrac{3^4.4^4}{6^4}=\dfrac{\left(3.4\right)^4}{6^4}=\dfrac{12^4}{6^4}=2^4=16\\ b,\text{ }\dfrac{15^3}{10^3}=\dfrac{\left(3.5\right)^3}{\left(2.5\right)^3}=\dfrac{3^3}{2^3}=\dfrac{27}{8}\\ c,\text{ }\dfrac{4^2.12^5}{9^2.2^{10}}=\dfrac{\left(2^2\right)^2.\left(2^2.3\right)^5}{\left(3^2\right)^2.2^{10}}\\ =\dfrac{2^4.2^{10}.3^5}{3^4.2^{10}}=2^4.3=16.3=48\\ d,\text{ }\dfrac{6^2+5.2^2+4}{15}=\dfrac{\left(36+4\right)+5.4}{15}\\ =\dfrac{40+20}{15}=\dfrac{60}{15}=4\)