Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ
Lời giải:
Vậy những phân số biểu diễn số hữu tỉ là :
a)Ta có:\(\dfrac{-14}{35}\)=\(\dfrac{-26}{65}\)=\(\dfrac{34}{-85}\)= -0,4
Vậy các phân số trên cùng biểu diễn 1 số hữu tỉ
Ta có:\(\dfrac{-27}{63}\)=\(\dfrac{-36}{84}\)=\(\dfrac{-3}{7}\)
Vậy các phân số trên cùng biểu diễn 1 số hữu tỉ
b)Ba cách viết của số hữu tỉ \(\dfrac{-3}{7}\) là\(\dfrac{-3}{7}\)=\(\dfrac{-6}{14}\)=\(\dfrac{-12}{28}\)=\(\dfrac{-15}{35}\)
Bài 21 a) Trong các phân số sau, những phân số nào biểu diễn cùng một số hữu tỉ?
−1435;−2763;−2665;−3684;34−85−1435;−2763;−2665;−3684;34−85
b) Viết ba phân số cùng biểu diễn số hữu tỉ 3737
Lời giải:
Ta có : −1435=−2665=34−85=−0,4−1435=−2665=34−85=−0,4 Vậy các phân số −1435;−2665;34−85−1435;−2665;34−85 cùng biểu diễn một số hữu tỉ
Tương tự −2763=−3684=−37−2763=−3684=−37 cùng biểu diễn một số hữu tỉ
b) Ba phân số cùng biểu diễn số hữu tỉ 3737 là:
−37=−614=12−28=−1535
Ta có : −1435=−2665=34−85=−0,4−1435=−2665=34−85=−0,4 Vậy các phân số −1435;−2665;34−85−1435;−2665;34−85 cùng biểu diễn một số hữu tỉ
Tương tự −2763=−3684=−37−2763=−3684=−37 cùng biểu diễn một số hữu tỉ
b) Ba phân số cùng biểu diễn số hữu tỉ 3737 là:
−37=−614=12−28=−1535
Rút gọn :
\(-\dfrac{14}{35}=-\dfrac{2}{5}\)
\(-\dfrac{27}{63}=-\dfrac{3}{7}\)
\(-\dfrac{27}{65}=-\dfrac{27}{65}\)
\(-\dfrac{36}{84}=-\dfrac{3}{7}\)
a: Các số biểu diễn dưới dạng thập phân hữu hạn là
\(3\dfrac{1}{4}=3,25\)
\(\dfrac{7}{32}=0.21875\)
các số biểu diễn số hửu tỉ \(\dfrac{3}{-4}\) là : \(\dfrac{-15}{20};\dfrac{24}{-32};\dfrac{-27}{36}\)
a) Các phân số được viết dưới dạng tối giản là:
\(\dfrac{5}{8};\dfrac{-3}{20};\dfrac{4}{11};\dfrac{15}{22};\dfrac{-7}{12};\dfrac{2}{5}\)
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=-0,15\) \(\dfrac{14}{35}=\dfrac{2}{5}=0,4\)
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
\(\dfrac{4}{11}=0,\left(36\right)\) \(\dfrac{-3}{20}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\)
b) Các phân số được viết dạng số thập phân hữu hạn
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=0,15\) \(\dfrac{14}{35}=0,4\)
Các số thập phân vô hạn tuần hoàn là:
\(\dfrac{15}{22}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\) \(\dfrac{4}{11}=0,\left(36\right)\)
a) Các phân số được viết dưới dạng tối giản là:
58;−320;411;1522;−712;2558;−320;411;1522;−712;25.
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
58=0,625;58=0,625; −320=−0,15−320=−0,15; 1435=25=0,41435=25=0,4
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
411=0,(36)411=0,(36) 1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3)
b) Các phân số được viết dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn là:
58=0,62558=0,625 −320=−0,15−320=−0,15 411=0,(36)411=0,(36)
1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3) 1435=0,4
Ta có:
\(-\dfrac{10}{6}=-1,\left(6\right)\) -> không phải số hữu tỉ
\(-\dfrac{7}{8}=-0,875\) -> là số hữu tỉ
\(-\dfrac{25}{15}=-1,\left(6\right)\) -> không phải số hữu tỉ
\(\dfrac{4}{-9}=-\dfrac{4}{9}=-0,\left(4\right)\) -> không phải số hữu tỉ
\(\dfrac{50}{-30}=-\dfrac{50}{30}=-1,\left(6\right)\) -> không phải số hữu tỉ
Vậy chỉ có phân số \(-\dfrac{7}{8}\) biểu diễn số hữu tỉ.
Ta có:
\(\dfrac{-6}{15}=\dfrac{4}{-10}=\dfrac{2}{-5}\)
Vậy phân số \(\dfrac{-6}{15}\) và phân số \(\dfrac{4}{-10}\) biểu diễn số hữu tỉ \(\dfrac{2}{-5}\)
Ta có: \(\dfrac{-6}{15}=\dfrac{-2}{5}=\dfrac{2}{-5}\)
\(\dfrac{4}{-12}=\dfrac{2}{-6}\)
\(\dfrac{4}{-10}=\dfrac{2}{-5}\)
\(\dfrac{20}{-8}=\dfrac{5}{-2}\)
Dễ thấy chỉ có \(\dfrac{-6}{15}\) và \(\dfrac{4}{-10}\) T/m.
Vậy ([ ])