K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

14 tháng 10 2017

Cho mk nói bạn Alan Walker chỉ là hs lớp 6 sao tài vậy

Nếu bạn ko biết làm thì thôi

Làm nhục anh em bạn ạ

13 tháng 6 2018

Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)

Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)

13 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{a^3}{b}+ab\)\(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)

\(\dfrac{b^3}{c}+bc\)\(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)

\(\dfrac{c^3}{a}+ac\)\(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(a^2+b^2+c^2\right)\) ( * )

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a^2+b^2\)\(2ab\left(4\right)\)

\(b^2+c^2\)\(2bc\left(5\right)\)

\(c^2+a^2\)\(2ac\left(6\right)\)

Cộng từng vế của ( 4 ; 5 ; 6) , ta có :

\(2\left(a^2+b^2+c^2\right)\)\(2\left(ab+bc+ac\right)\) ( ** )

Từ ( * ; ** ) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(ab+bc+ac\right)\)

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\)\(ab+bc+ac\)

4 tháng 9 2017

.Tuy nhiên mik có thể chữa lại đề cho ae dễ đọc nha:

Cho a,b,c>0 và:

\(P=\frac{a^3}{a^2}+ab+b^2+\frac{b^3}{b^2}+bc+c^2+\frac{c^3}{c^2}+ac+a^2.\)

\(Q=\frac{b^3}{a^2}+ab+b^2+\frac{c^3}{b^2}+bc+c^2+\frac{a^3}{c^2}+ac+a^2.\)

Chứng minh rằng:P=Q.

28 tháng 6 2021

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

28 tháng 6 2021

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

1 tháng 9 2020

Câu a bạn chứng minh được rồi là xong nha !!!!!!!

Câu b) 

\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)

\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được: 

=>   \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)

=>   \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

DẤU "=" Xảy ra <=>    \(a=b=c\)

Vậy ta có ĐPCM !!!!!!!!

3 tháng 1 2019

Bài 3 :

Gọi 4 số tự nhiên đó lần lượt là a; a + 1; a + 2; a + 3

Ta có biểu thức :

\(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(A=\left[a\left(a+3\right)\right]\left[\left(a+1\right)\left(a+2\right)\right]+1\)

\(A=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt \(x=a^2+3a+1\)ta có :

\(A=\left(x-1\right)\left(x+1\right)+1\)

\(A=x^2-1^2+1\)

\(A=x^2\left(đpcm\right)\)

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)