Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\\\Leftrightarrow x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\\ \Leftrightarrow x^2+x^2-2x^2+6x+4x=-9+4+2+7\\ \Leftrightarrow10x=4\\ \Leftrightarrow x=\frac{2}{5}\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{2}{5}\right\}\)
\(b.36x^2-4=0\\\Leftrightarrow 4\left(9x^2-1\right)=0\\ \Leftrightarrow9x^2-1=0\\\Leftrightarrow \left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
\(c.\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\\ \Leftrightarrow x^3+27-x^3+x-27=0\\\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0\right\}\)
\(d.x^2-4x+3=0\\ \Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
\(e.x\left(2x-1\right)-\left(x-2\right)\left(2x+3\right)=0\\ \Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\\ \Leftrightarrow2x^2-2x^2-x-3x+4x+6=0\\ \Leftrightarrow6=0\left(sai\right)\)
\(\Rightarrow\) Vô nghiệm
\(g.\left(x-1\right)\left(x+2\right)-x-2=0\\\Leftrightarrow x^2+x-2-x-2=0\\\Leftrightarrow x^2=0\\ \Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0\right\}\)
2.
Gọi tổng số sản phẩm theo dự định là x ( SP) x > 0
Số ngày hoàn thành sản phẩm theo dự định là: \(\dfrac{x}{50}\) ngày
Tổng số sản phẩm heo thự tế là: x + 13 (SP)
Số ngày hòan thành sản phẩm theo thực tế là: \(\dfrac{x+13}{57}\) ngày
Theo đề ra ta có pt:
\(\dfrac{x}{50}-\dfrac{x+13}{57}=1\)
\(\Leftrightarrow57x-50x-650=2850\)
\(\Leftrightarrow7x-650=2850\)
\(\Leftrightarrow7x=3500\)
\(\Leftrightarrow x=500\) (nhận)
Vậy tổng số sản phẩm theo dự định là 500 (SP)
e)\(\dfrac{x-5}{75}+\dfrac{x-2}{78}+\dfrac{x-6}{74}+\dfrac{x-68}{12}=4\)
\(\Leftrightarrow\dfrac{x-5}{75}-1+\dfrac{x-2}{78}-1+\dfrac{x-6}{74}-1+\dfrac{x-68}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-80}{75}+\dfrac{x-80}{78}+\dfrac{x-80}{74}+\dfrac{x-80}{12}=0\)
\(\Leftrightarrow\left(x-80\right)\left(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\right)=0\)
\(\Leftrightarrow x=80\)(vì \(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\ne0\))
f)\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)(\(ĐKXĐ:x\ne-1;-3;-5;-7\))
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{6}{x^2+8x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow2x^2+16x+14=54\)
\(\Leftrightarrow2x^2+16x-40=0\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+4\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=6\\x+4=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(c.\:\left(3x+4\right)^2-\left(3x+1\right)\left(3x-1\right)\\ =9x^2+24x+16-9x^2+1\\ 40x=-1\\ x=-\dfrac{1}{40}\)
\(d.\:\left(3x-1\right)^2-\left(3x-2\right)^2=0\\ \left(3x-1+3x-2\right)\left(3x-1-3x+2\right)=0\\ \left(6x-3\right)=0\\ x=\dfrac{1}{2}\)
\(g.\:\left(2x+1\right)^2-\left(x-1\right)^2=0\\ \left(2x+1+x-1\right)\left(2x+1-x+1\right)=0\\ 3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c,\(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(\Rightarrow9x^2+24x+16-\left(9x^2-1\right)=49\)
\(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=49-1-16\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
d, \(\left(3x-1\right)^2-\left(3x-2\right)^2=0\)
\(\Rightarrow\left(3x-1-3x+2\right).\left(3x-1+3x-2\right)=0\)
\(\Rightarrow6x-3=0\Rightarrow6x=3\Rightarrow x=\dfrac{1}{2}\)
e, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Rightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Rightarrow\left(x+2\right).3x=0\Rightarrow x.\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Chúc bạn học tốt!!!
a)(x+2y)2=(x+2y)(x+2y)
=x2+2xy+2xy+4y2
=x2+4xy+4y2
b)(3x-2y)2=(3x-2y)(3x-2y)
=9x2-6xy-6xy+4y2
=9x2-12xy+4y2
c)(2x-1/2)2=(2x-1/2)(2x-1/2)
=4x2-x-(4x-1)/4
=16x2-8x+1/4
d,e làm như c (do mk ko thik lm mấy loại p/s nên bn cố lm)
g)(x-2)(x2+2x+4)=x3+2x2+4x-2x2-4x-8
=x3+(2x2-2x2)+(4x-4x)-8
=x3-8
\(f\left(x\right)=x^2-2x-1\Rightarrow f\left(3x\right)=\left(3x\right)^2-2.3x-1\)\(\Rightarrow g\left(x\right)=9x^2-6x-1+10=9x^2-6x+9\)
\(\Leftrightarrow\left(3x-1\right)^2+8\)
\(\Rightarrow g\left(1\right)=\left(3.1-1\right)^2+8=12\)
Không chắc:
f(x)=x2-2x-1
=> f(3x)=3(x2-2x-1)
g(x)=3(x2-2x-1)+10
Thay x=1 ta được g(x)=4
\(g\left(-1\right)=\left(-1\right)^2-3.\left(-1\right)+1=5\)
\(g\left(0\right)=0^2-3.0+1=1\)
\(g\left(1\right)=1^2-3.1+1=-1\)
\(g_{\left(-1\right)}=\left(-1\right)^2-3\cdot\left(-1\right)+1=1+3+1=5\)
\(g_{\left(0\right)}=0^2-3\cdot0+1=0-0+1=1\)
\(g_{\left(1\right)}=1^2-3\cdot1+1=1-3+1=-1\)