K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 2 2020
a, xét tam giác ACH và tam giác KCH có : CH chung
góc AHC = góc KHC = 90
AH = HK do H là trđ của AK (gt)
=> tam giác ACH = tam giác KCH (2cgv)
b, xét tam giác AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)
BE= EC do E là trđ của BC (GT)
AE = ED do E là trđ của AD (gt)
=> tam giác AEC = tam giác DEB (c-g-c)
=> BD = AC (đn)
tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)
=> BD = CK (tcbc)
c, xét tam giác AEH và tam giác KEH có: EH chung
AH = HK (câu a)
góc AHE = góc KHE = 90
=> tam giác AEH = tam giác KEH (2cgv)
=> góc AEH = góc KEH mà EH nằm giữa EA và EK
=> EH là phân giác của góc AEK (đn)
Bổ sung đề: ΔABC vuông tại A
a: Xét ΔEAB và ΔEND có
EA=EN
\(\widehat{AEB}=\widehat{NED}\)(hai góc đối đỉnh)
EB=ED
Do đó: ΔEAB=ΔEND
=>\(\widehat{EAB}=\widehat{END}\)
=>AB//ND
b: Ta có: AB//ND
AB\(\perp\)AC
Do đó: ND\(\perp\)AC
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên \(AD=\dfrac{BC}{2}=AB=BD\)
=>ΔABD đều
Ta có: ΔABD đều
mà AE là đường trung tuyến
nên AE\(\perp\)BD
Xét ΔANC có
CE,ND là các đường cao
CE cắt ND tại D
Do đó: D là trực tâm của ΔANC
=>AD\(\perp\)NC
Còn câu c nx ạ