K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

10³ + 2¹⁵

= 1000 + 32768

= 33768

Mà 33768 : 33 = 1023 (dư 9)

Em xem lại đề

26 tháng 7 2021
Huhu, có ai ko ạ. Ai giải dùm mik đc ko ạ. Xin cảm ơn nhiều
26 tháng 7 2021

Bạn làm ơn ghi RÕ đề bài để mình giải nhé

7 tháng 1 2022

Ta có:\(BC=BH+CH=32+18=50\)

Áp dụng hệ thức lượng ta có:

\(CH.BC=AC^2\\ \Rightarrow AC=\sqrt{CH.BC}\\ \Rightarrow AC=\sqrt{32.50}\\ \Rightarrow AC=40\)

31 tháng 7 2015

M = 22010-(22009 + 22008+....+21+20

Đặt A =( 22009+22008+...21 +20)

Suy ra 2A = 22010+22009+22008+...22+2

Suy ra 2A-A = ( 22010+22009+22008+...+22+2) - (22009+ 22008+...+21+20)

Suy ra A= 22010-20

Suy ra M = 22010-A=22010 - 22010+20=1

Vậy M=1

Đúng nha

16 tháng 9 2017

tui biet cach lam rui

2 tháng 12 2021

ĐKXĐ : 2x \(\ge\)0 <=> x \(\ge\)0

| 7 + x | = 2x <=> \(\orbr{\begin{cases}7+x=2x\\7+x=-2x\end{cases}}\)

                     <=> \(\orbr{\begin{cases}x=7\\x=\frac{-7}{3}\end{cases}}\)( KTMĐK)

Vậy x = 7 

21 tháng 7 2021

(x+1)+(x+2)+(x+3)=4x

x+1+x+2+x+3=4x

(x+x+x)+(1+2+3)=4x

x*3+6=4x

6=1*x(bớt cả hai vế đi 3*x)

x=6/1(Tìm thừa số)

x=6

23 tháng 5 2020

Cho đa thức

P(x)= x mũ 2 + 2x mũ 2 +1 (1)

Thay P(-1) vào đa thức (1) , ta có :

P= \((-1)^2 +2.(-1) ^3\)

P= \(1+ (-2)\)

P= \(-1\)

Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :

\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)

\(P= \dfrac{1}{4} + \dfrac{1}{4}\)

\(P=\dfrac{1}{2}\)

Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)

Thay Q(-2) vào đa thức (2) , ta có :

Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)

\(Q = 16-32+8+8+1\)

\(Q= 1\)

Thay Q(1) vào đa thức (2) , ta có:

\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)

\(Q= 1+ 4+2-4+1\)

\(Q= 4\)

Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)

25 tháng 9 2021

Kẻ Bz//Ax

Ta có: Ax//Bz

\(\Rightarrow\widehat{BAx}=\widehat{ABz}=30^0\)(so le trong)

\(\Rightarrow\widehat{zBC}=\widehat{ABC}-\widehat{BAx}=90^0-30^0=60^0\)

Ta có: \(\widehat{zBC}+\widehat{BCy}=60^0+120^0=180^0\)

Mà 2 góc này là 2 góc trong cùng phía

=> Bz//Cy

Mà Bz//Ax

=> Ax//Cy