K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

\(n,3.4^x-2^{2x+1}=16\\ \Leftrightarrow3.4^x-4^x.2=2^4\\ \Leftrightarrow4^x=4^2\\ \Leftrightarrow x=2\)

\(m,5.3^{x-1}+3^{x+1}=52\\ \Leftrightarrow\dfrac{5}{3}.3^x+3.3^x=52\\ \Leftrightarrow\dfrac{14}{3}.3^x=52\\ \Leftrightarrow3^x=\dfrac{78}{7}\)

đến đây ko bt

 

18 tháng 11 2021

b ơi câu n số mũ chẵn nên nó phải tách 2 TH chứ

7 tháng 8 2017

/x+1/+/x+2/+/x+3/+/x+4/

=(x+1)(x+2)(x+3)(x+4)

=(x+x+..+x)(1+2+3+4)

số số hạng của tổng là

(4-1):1+1=4

tổng của dãy là

(1+4).4:2=10

=>4x.10=0

=>4x=0=>x=0

30 tháng 1 2021

Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)

Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất

\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0

Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow2x\in\left\{4;8\right\}\)

\(\Rightarrow x\in\left\{2;4\right\}\)

Mà x nhỏ nhất và x > 0 nên x = 2

Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)

Vậy MaxA = 6 tại x = 2.

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

25 tháng 1 2019

Vì \(\left(2x-3\right)^2\ge0\forall x\)nên :

\(C=\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

Vậy \(C_{min}=\frac{-4}{5}\Leftrightarrow x=\frac{3}{2}\)

NV
11 tháng 1 2019

\(VT=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) \(\Rightarrow VT\ge4\) (1)

Lại có \(3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+2\ge2\)

\(\Rightarrow\dfrac{8}{3\left(x+1\right)^2+2}\le\dfrac{8}{2}=4\) \(\Rightarrow VP\le4\) (2)

Từ (1), (2) \(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|2x+3\right|+\left|2x-1\right|=4\\\dfrac{8}{3\left(x+1\right)^2+2}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x+3\right)\left(1-2x\right)\ge0\\3\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Mong mn giúpthanghoathanghoathanghoa

Mk sắp thi r ạ!!!khocroikhocroikhocroi