K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2024

a=2,b=4

12 tháng 4 2024

Để giải phương trình này, ta có thể sử dụng một số phân tích như sau:
1. Trường hợp đặc biệt: Nếu (a = b), thì phương trình trở thành (a^a = a^a), điều này luôn đúng với mọi giá trị của (a).
2. Trường hợp (a = 1) hoặc (b = 1): Nếu một trong hai số là 1, thì phương trình trở thành (1^b = b^1), điều này cũng luôn đúng với mọi giá trị của (b).
3. Trường hợp (a = 2) và (b = 4): Ta thấy rằng (2^4 = 4^2), vậy đây là một giá trị thỏa mãn.
4. Trường hợp (a = 4) và (b = 2): Ta thấy rằng (4^2 = 2^4), vậy đây cũng là một giá trị thỏa mãn.
Vậy, các cặp giá trị thỏa mãn phương trình là ((a, b) = (2, 4)) và ((a, b) = (4, 2)).

11 tháng 11 2019

P/s : bài này khá khó nên mình thử thôi ! 

Không mất tính tổng quát , ta giả sử : \(a\ge b\ge c\)

Đặt \(M=ab+bc+ca-12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

      \(N=a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\)

Ta có : \(ab+ac+bc\ge a\left(b+c\right)\)hay \(a^2b^2+b^2c^2+c^2a^2\le a^2\left(b+c\right)^2\)

\(\Rightarrow M\ge N\)

Tiếp , ta sẽ chứng minh \(N\ge0\)

\(\Leftrightarrow a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\ge0\)

\(\Leftrightarrow a\left(b+c\right)\left\{1-12a\left(b+c\right)\left[a^3+\left(b+c\right)^3\right]\right\}\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[a^3\left(b+c\right)^3\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[\left(a+b+c\right)^3-3a\left(b+c\right)\left(a+b+c\right)\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[1-3a\left(b+c\right)\right]\ge0\left(1\right)\)

Đặt x = a ; y = b + c ta có : \(x+y=1\Rightarrow xy\le\frac{1}{4}\)

Theo bất đẳng thức AM - GM , ta có :

\(12xy\left(1-3xy\right)\le\frac{1}{4}.12xy\left(4-12xy\right)\le\frac{1}{4}\left(\frac{12xy+4-12xy}{2}\right)^2=1\)

=> Bất đẳng thức ( 1 ) luôn đúng 

\(\Rightarrow N\ge0\)

Vậy \(M\ge0\)\(\Leftrightarrow ab+bc+ca\ge12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Đẳng thức xảy ra với bộ \(\left(\frac{3+\sqrt{3}}{6};\frac{3-\sqrt{3}}{6};0\right)\)và các hoán vị của chúng .

12 tháng 11 2019

WLOG: \(c=min\left\{a,b,c\right\}\)

Let \(p=a+b+c;ab+bc+ca=q;abc=r\) so p = 1; \(r\ge0\)and \(3\ge q\ge ab\left(\text{vì }c\ge0\right)\)

Need: \(q\ge12\left(p^3-3pq+3r\right)\left(q^2-2pr\right)\)

Have: \(VP=12\left(1-3q+3r\right)\left(q^2-2r\right)=\frac{2}{3}.\left(1-3q+3r\right).18\left(q^2-2r\right)\)

\(\le\frac{1}{6}\left[1-3q+3r+18\left(q^2-2r\right)\right]=\frac{1}{6}\left[18q^2-3q+1-33r\right]\)

\(\le\frac{1}{6}\left(18q^2-3q+1\right)=3q^2-\frac{1}{2}q+\frac{1}{6}\)

Hence, we need to prove: \(q\ge3q^2-\frac{1}{2}q+\frac{1}{6}\)

\(\Leftrightarrow3q^2-\frac{3}{2}q+\frac{1}{6}\le0\Leftrightarrow\frac{1}{6}\le q\le\frac{1}{3}\)

Which it is obvious because:

\(q=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(q-\frac{1}{6}=ab+bc+ca-\frac{1}{6}=ab+c-\frac{1}{6}+c\left(a+b-1\right)\)\(=ab-\frac{1}{6}+1-\left(a+b\right)-c\left[1-\left(a+b\right)\right]\)

\(=ab-\frac{1}{6}+\left[1-\left(a+b\right)\right]\left(1-c\right)\ge0\)

1 tháng 10 2017

d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca

    => 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 = 0

=> | ( a-b)^2 = 0 => a=b     
     |  ( a-c)^2 = 0 => a=c
     |  ( b-c)^2 = 0 => b=c

=>>> a=b=c

1 tháng 10 2017

b) => 2(a-b)^2 - (a-b)^2  = 0

   2 ( a^2- 2ab + b^2) - a^2+ 2ab - b^2 = 0

  2a^2 - 4ab+ 2b^2 - a^2 + 2ab - b^2 = 0

 a^2 -2ab + b^2 =0 

( a-b)^2 = 0 => a=b

Cái này bạn nên xem lại đề có đúng ko nha~~ Mk ko lm ra số đối đc Sorry

7 tháng 10 2019

Áp dụng BĐT Cauchy cho 4 số dương:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{\left(abcd\right)^4}=4abcd\)

(Dấu "="\(\Leftrightarrow a=b=c=d\))

\(\Rightarrow a=b=c=d=\frac{2016}{4}=504\)

10 tháng 10 2019

Bài này em làm nhầm rồi nhé: chú ý: \(\sqrt[4]{\left(abcd\right)^4}=\left|abcd\right|\ne abcd\)  nhé!

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

1 tháng 6 2021

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b