K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(D=3^0+3^1+...+3^{302}\)

=>\(3D=3+3^2+...+3^{303}\)

=>\(3D-D=3+3^2+...+3^{303}-3^0-3^1-...-3^{202}\)

=>\(2D=3^{303}-1\)

=>\(2D+1=3^{303}\)

=>\(27n=3^{303}\)

=>\(n=3^{300}\)

 

1)\(D=3^0+3^1+...+3^{302}\)

\(\Rightarrow3D=3\left(1+3+3^2+...+3^{302}\right)\)

\(\Rightarrow3D=3+3^2+3^3+...+3^{302}+3^{303}\)

\(\Rightarrow3D-D=\left(3+3^2+3^3+...+3^{303}\right)-\left(3^0+3^1+...+3^{302}\right)\)

\(\Rightarrow2D=3^{303}-3^0\)

\(\Rightarrow2D=3^{303}-1\)

\(\Rightarrow2D-1=3^{303}\)

\(Do3^{303}=\left(3^3\right)^{101}=27^{101}\)

\(\Rightarrow2D+1=27^{101}=27^n\)

\(\Rightarrow n=101\)

15 tháng 6 2019

a) 2A=2^2+2^3+...+2^100

A= 2A-A= 2^100-2 không phải là số chính phương

A+2 = 2^100 là số chính phương

b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A

c) 2100 - 2 = 299.2-2=833.2 -2  => n rỗng

d) ta có: 24k chia 7 dư 2 

2100-2 = 24.25-2 chia hết chp 7

e) ta có: 24k chia 6 dư 4

2100-2 = 24.25-2 chia 6 dư 2

f) ta có: 24k tận cùng 6

2100-2 = 24.25-2 tận cùng 4

15 tháng 6 2019

Cảm ơn bạn nhé :))

15 tháng 8 2021

a, 

A = 2 + 22 + 23 +...+210

A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )

A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)

A = 2 .3 + 23 .3 + ...+29.3

A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3

Vậy A \(⋮\) 3

b, A = 2 + 22 + 23 +...+210

A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )

A =  2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)

A = 2 . 31 + 26 .31

A = 31(2+26 ) \(⋮\) 31

vậy A \(⋮\) 31

d , A = 2 + 22 + 23 +...+210  

Bài 3 : 

Ta có : \(x^2+2\ge2\forall x\Rightarrow\left(x^2+2\right)^2\ge4\forall x\)

             \(\left|y-1\right|\ge0\forall y\)

Nên K = \(\left(x^2+2\right)^2+\left|y-1\right|+2014\ge4+0+2014=2018\)

Vậy Kmin = 2018 khi x2 + 2 = 2

                            <=> x2 = 0 

                              <=> x = 0 

                              |y - 1| = 0 

                              <=> y - 1 = 0 

                               <=> y = 1 

18 tháng 4 2017

bai 1 to chiu

18 tháng 4 2017

bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056

3 tháng 1 2016

4A+1 là số chính phương

3 tháng 1 2016

đăng từng câu thôi

20 tháng 12 2021

Mọi người giúp mik với nhé

có nên giúp ko nhể

5 tháng 12 2023

H-E-L-P-M-E

5 tháng 12 2023

 Trước tiên, ta thấy \(\left(n+1\right)\left(n+2\right)...\left(n+5\right)\) là tích của 5 số tự nhiên liên tiếp nên tích này chia hết cho 5. Do đó A chia 5 dư 2.

 Ta sẽ chứng minh một số chính phương (bình phương của một số tự nhiên \(k\)) không thể chia 5 dư 2. Thật vậy:

 Nếu \(k⋮5\Rightarrow k^2⋮5\)

 Nếu \(k\) chia 5 dư 1 hay -1 (tức là dư 4) thì đặt \(k=5l\pm1\left(l\inℕ\right)\) \(\Rightarrow k^2=\left(5l\pm1\right)^2=25l^2\pm10l+1\) chia 5 dư 1.

 Nếu \(k\) chia 5 dư 2 hay -2 (tức là dư 3) thì đặt \(k=5l\pm2\left(l\inℕ\right)\) thì \(k^2=\left(5l\pm2\right)^2=25l^2\pm20l+4\) chia 5 dư 4.

 Vậy một số chính phương không thể chia 5 dư 2. Thế nhưng theo cmt, A chia 5 dư 2. Điều này có nghĩa là A không phải bình phương của bất kì số nguyên nào. (đpcm)